Volume 18, Issue 1 (10-2024)                   IJOP 2024, 18(1): 129-138 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dolatabady A, Habibi N. Optimized Plasmonic Refractive Index Sensor Based on Graphene Ribbon Array. IJOP 2024; 18 (1) :129-138
URL: http://ijop.ir/article-1-587-en.html
1- Department of Electrical Engineering, Faculty of Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
2- Ayatollah Boroujerdi University
Abstract:   (44 Views)
In this paper, a plasmonic refractive index sensor based on a graphene ribbon array is proposed. Graphene ribbons are employed to excite surface plasmon waves, providing a subwavelength sensor. The structure exhibits a resonance feature, enabling wavelength-selective operation. It acts like a band rejection filter. The filtering behavior depends on the absorption of the incident light from an incident port at specific wavelengths. The rejected and absorbed bands depend on the structural parameters of the proposed sensor, such as the refractive index of the material surrounding the ribbons. A change in the refractive index of the material would change the wavelength of the transmitted lightwaves out of the sensor, providing a measuring approach to detect various transparent materials. The operation of the structure is simulated using the finite difference time domain (FDTD) numerical method and verified utilizing a simple characteristic equation. Due to the chemical potential dependency of graphene conductivity, the proposed sensor can be calibrated via an external voltage bias. The optimization of the proposed sensor performance can be accomplished through straightforward utilization of calculus. The proposed subwavelength sensor is widely applicable in terahertz-band applications, such as biological and chemical sensing.
Full-Text [PDF 740 kb]   (26 Downloads)    
Type of Study: Research | Subject: Nanophotonics and Nanostructures
Received: 2025/06/6 | Revised: 2026/02/1 | Accepted: 2026/01/29 | Published: 2026/02/1

References
1. Y. Liu, G.P. Wang, J.B. Pendry, and S. Zhang, "All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials," Light Sci. Appl. Vol. 11, pp. 276(1-7), 2022. [DOI:10.1038/s41377-022-00972-9] [PMID] []
2. X. Jing, D. Feng, Y. Tian, M. Li, C. Chu, C. Li, Y. He, H. Gan, and Z. Hong, "Design of two invisibility cloaks using transmissive and reflective metamaterial-based multilayer frame microstructures," Opt. Express, Vol. 28, pp. 35528 35539, 2020. [DOI:10.1364/OE.409137] [PMID]
3. M. Shaheryar Khan, R.A. Shakoor, O. Fayyaz, and E. Mahdi Ahmed, "A focused review on techniques for achieving cloaking effects with metamaterials," Optik, Vol. 297, pp. 171575(1-20), 2023. [DOI:10.1016/j.ijleo.2023.171575]
4. H. Nassar, Y.Y. Chen, and G.L. Huang, "Polar metamaterials: A new outlook on resonance for cloaking applications," Phys. Rev. Lett. Vol. 124, pp. 084301(1-6), 2020. [DOI:10.1103/PhysRevLett.124.084301] [PMID]
5. C. Milias, R.B. Andersen, P.I. Lazaridis, Z.D. Zaharis, B. Muhammad, and J.T.B. Kris, "Metamaterial-inspired antennas: A review of the state of the art and future design challenges," IEEE Access, Vol. 9, pp. 89846-89865, 2021. [DOI:10.1109/ACCESS.2021.3091479]
6. R. Dhama, B. Yen, C. Palego, and Z. Wang, "Super-resolution imaging by dielectric super lenses: TiO2 metamaterial super lens versus BaTiO3superlens," Photonics, Vol. 8, pp. 222(1-9), 2021. [DOI:10.3390/photonics8060222]
7. M. Xu, T. Liang, M. Shi, and H. Chen, "Graphene-like two-dimensional materials," Chem. Rev. Vol. 113, pp. 3766-3798, 2013. [DOI:10.1021/cr300263a] [PMID]
8. A.R. Urade, I. Lahiri, and K.S. Suresh, "Graphene properties, synthesis and applications: A review," J. Min. Met. Met. Soc. Vol. 75, pp. 614-630, 2023. [DOI:10.1007/s11837-022-05505-8] [PMID] []
9. B. Wang, K. Gai, R. Wang, F. Yan, and L. Li, "Ultra-broadband perfect terahertz absorber with periodic-conductivity graphene metasurface," Opt. Laser Technol. Vol. 154, pp. 160-167, 2022. [DOI:10.1016/j.optlastec.2022.108297]
10. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, "Graphene plasmonic metasurfaces to steer infrared light," Sci. Rep. Vol. 5, pp. 12423(1-9), 2015. [DOI:10.1038/srep12423] [PMID] []
11. V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, and A.U. Khan, "Graphene synthesis, characterization and its applications: A review," Results Chem. Vol. 3, pp. 100163(1-9), 2021. [DOI:10.1016/j.rechem.2021.100163]
12. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, and R.S. Ruoff, "Thermal conductivity of isotopically modified graphene," Nat. Mat. Vol. 11, pp. 203-207, 2012. [DOI:10.1038/nmat3207] [PMID]
13. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Him, "A roadmap for graphene," Nature, Vol. 490, pp. 192-200, 2012. [DOI:10.1038/nature11458] [PMID]
14. A.N. Grigorenko, M. Polini, and K.S. Novoselov, "Graphene plasmonics," Nat. Photon. Vol. 6, pp. 749-758, 2012. [DOI:10.1038/nphoton.2012.262]
15. A. Dolatabady, N. Granpayeh, and M. Salehi, "Ferrite loaded graphene based plasmonic waveguide," Opt. Quant. Electron. Vol. 50, pp. 345(1 11), 2018. [DOI:10.1007/s11082-018-1604-z]
16. M. Gholipoor and N. Solhtalab, "Broadband graphene-based optical power coupler and polarization beam splitter using a directional coupler," OSA Continuum, Vol. 4, pp. 3221-3232, 2021. [DOI:10.1364/OSAC.446234]
17. A. Dolatabady and N. Granpayeh, "Graphene based far-infrared junction circulator," IEEE Trans. Nanotechnol. Vol. 18, pp. 200-207, 2019. [DOI:10.1109/TNANO.2018.2889522]
18. A. Dolatabady, N. Granpayeh, and M. Abedini, "Frequency-tunable logic gates in graphene nano-waveguides," Photon. Net. Commun., Vol. 39, pp. 187-194, 2020. [DOI:10.1007/s11107-020-00881-0]
19. A. Andryieuski and A.V. Lavrinenko, "Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach," Opt. Express, Vol. 21, pp. 9144-9155, 2013. [DOI:10.1364/OE.21.009144] [PMID]
20. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, "A perfect absorber made of a graphene micro-ribbon metamaterial," Opt. Express, Vol. 20, pp. 28017-28024, 2012. [DOI:10.1364/OE.20.028017] [PMID]
21. M. Faraji, M.K. Moravvej-Farshi, and L. Yousefi, "Tunable THz perfect absorber using graphene-based metamaterials," Opt. Commun. Vol. 355, pp. 352-355, 2015. [DOI:10.1016/j.optcom.2015.06.050]
22. A. Dolatabady and N. Granpayeh, "Manipulation of the Faraday rotation by graphene metasurfaces,"J. Magn. Magn. Mater. Vol. 469, pp. 231-235, 2019. [DOI:10.1016/j.jmmm.2018.08.033]
23. H.S. Chu and C.H. Gan, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett. Vol. 102, pp. 68-72, 2013. [DOI:10.1063/1.4810003]
24. H. Zhuang, F. Kong, K. Li, and S. Sheng, "Plasmonic bandpass filter based on graphene nanoribbon," Appl. Opt. Vol. 54, pp. 2558-2564, 2015. [DOI:10.1364/AO.54.002558] [PMID]
25. P. Ji, Q. Shi, L. Zheng, G. Wang, and F. Chen, "High sensitivity plasmonic refractive index and temperature sensor based on square ring shape resonator with nanorods defects," Opt. Quant. Electron. Vol. 54, pp. 184(1-15), 2022. [DOI:10.1007/s11082-022-03572-4]
26. Z. Chen, X. Ma, S. Zhang, T. Li, Y. Wang, and Z.L. Hou, "Pressure sensor based on optical resonator in a compact plasmonic system," IEEE Sens. J. Vol. 24, pp. 4418-4423, 2024. [DOI:10.1109/JSEN.2023.3348534]
27. A. Dolatabady, N. Granpayeh, and V. Foroughi Nezhad, "A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator," Opt. Commun. Vol. 300, pp. 265-268, 2013. [DOI:10.1016/j.optcom.2013.02.037]
28. A. Dolatabady, S. Asgari, and N. Granpayeh, "Tunable mid-infrared nanoscale graphene-based refractive index sensor," IEEE Sens. J. Vol. 18, pp. 569-574, 2018. [DOI:10.1109/JSEN.2017.2778003]
29. H.S. Chu and C.H. Gan, "Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays," Appl. Phys. Lett. Vol. 102, pp. 231107(1-4), 2013. [DOI:10.1063/1.4810003]
30. J.S. Gomez-Diaz and J. Perruisseau-Carrier, "Graphene-based plasmonic switches at near infrared frequencies," Opt. Express, Vol. 21, pp. 15490-15504, 2013. [DOI:10.1364/OE.21.015490] [PMID]
31. [31] B.K. Min, S.K. Kim, S.J. Kim, S.H. Kim, M.A. Kang, C.Y. Park, W. Song, A. Myung, J. Lim, and K.S. An, "Electrical double layer capacitance in a graphene embedded Al2O3 gate dielectric," Sci. Rep. Vol. 5, pp. 16001(1-7), 2015. [DOI:10.1038/srep16001] [PMID] []
32. M. Pan, Z. Liang, Y. Wang, and Y. Chen, "Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons," Sci. Rep. Vol. 6, pp. 29984(1 9), 2016. [DOI:10.1038/srep29984] [PMID] []
33. [33] X. Yan, L. Yuan, Y. Wang, T. Sang, and G. Yang, "Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons," J. Phys. Chem. C, Vol. 112, pp. 17741 17744, 2008.
34. R.A. Lewis, "A review of terahertz sources," J. Phys. D: Appl. Phys. Vol. 47, pp. 374001(1-11), 2014. [DOI:10.1088/0022-3727/47/37/374001]
35. D.G. Luenberger and Y. Yinyu, Linear and Nonlinear Programming, Springer Nature, 5th Ed. 2021. [DOI:10.1007/978-3-030-85450-8]
36. J. Hass, C. Heil, and M. Weir, Thomas' Calculus: Early Transcendentals, Pearson, 14th Ed. 2017.
37. X. Wang, J. Zhu, X. Wen, X. Wu, Y. Wu, Y. Su, H. Tong, Y. Qi, and H. Yang, "Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film," Opt. Mat. Express, Vol. 9, pp. 3079-3088, 2019. [DOI:10.1364/OME.9.003079]
38. C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, "A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays," Sensors, Vol. 18, pp. 4489(1-10), 2018. [DOI:10.3390/s18124489] [PMID] []
39. M. Irfan, Y. Khan, A.U. Rehman, M.A. Butt, S.N. Khonina, and N.L. Kazanskiy, "Plasmonic refractive index and temperature sensor based on graphene and LiNbO3," Sensors, Vol. 22, pp. 7790(1-12), 2022. [DOI:10.3390/s22207790] [PMID] []
40. S. Wang, X. Sun, M. Ding, G. Peng, Y. Qi, Y. Wang, and J. Ren, "The investigation of an LSPR refractive index sensor based on period gold nanoring array," J. Phys. D. Appl. Phys. Vol. 51, pp. 045101(1-7), 2018. [DOI:10.1088/1361-6463/aaa06a]
41. B.B. Choi, B. Kim, Y. Chen, S.J. Yoo, Y. Cho, and P. Jiang, "Elevated surface plasmon resonance sensing sensitivity of Au-covered silica sphere monolayer prepared by Langmuir-Blodgett coating," J. Ind. Eng. Chem. Vol. 99, pp. 179-186, 2021. [DOI:10.1016/j.jiec.2021.04.026]
42. N. Wei, P. Xu, Y. Yao, J. Li, E. Liu, and J. Luo, "Bragg grating sensor for refractive index based on a D-shaped circular photonic crystal fiber," J. Opt. Soc. Am. Vol. 39, pp. 800-805, 2022. [DOI:10.1364/JOSAA.453467] [PMID]
43. J. Chen, Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G.S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Phot. Technol. Lett. Vol. 30, pp. 728-731, 2018. [DOI:10.1109/LPT.2018.2814216]
44. V.R. Surisetty, A.K. Dalai, and J. Kozinski, "Alcohols as alternative fuels: An overview," Appl. Catal. A: Gen. Vol. 404, pp. 1-11, 2011. [DOI:10.1016/j.apcata.2011.07.021]
45. R. Rahad, N. Hossain, and A. Hossain, "Enhanced alcohol detection using surface plasmon polariton dependent MIM plasmonic sensor," Plasmonics, Vol. 20, pp. 1331-1340, 2025. [DOI:10.1007/s11468-024-02360-y]
46. J. Ortega, "Densities and refractive indices of pure alcohols as a function of temperature," J. Chem. Eng. Data, Vol. 27, pp. 312-317, 1982. [DOI:10.1021/je00029a024]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb