Volume 18, Issue 1 (10-2024)                   IJOP 2024, 18(1): 33-42 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shayganmanesh M, Razzaghi D, Goli Hasanlo M, Jalilzadeh Heydarlou A, Akbari M, Moghaddam M R. Corrected ABCD Approach for Optimization of High Thermal Lensed Solid-State Lasers: Case Study of a Typical Cr,Tm,Ho:YAG Laser. IJOP 2024; 18 (1) :33-42
URL: http://ijop.ir/article-1-573-en.html
1- School of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran
2- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
Abstract:   (146 Views)
In this paper, the thick thermal lens approximation is evaluated for a CTH:YAG laser with a standard telescopic resonator. An accurate relation between the thermal lensing parameter and lens-like media factor is proposed. Telescope adjustments were studied based on the practical values of the focal length of the thermal lens. The fundamental mode volume is determined regarding the Hermit-Gaussian theory, and the influence of the defocus parameter is examined. The study emphasizes the importance of considering both the fundamental mode volume and the distance to the stability boundary when selecting the optimal defocusing parameter. A merit factor was introduced that provides a comprehensive approach to selecting the most suitable defocus parameter for the system.
 
Full-Text [PDF 1103 kb]   (70 Downloads)    
Type of Study: Research | Subject: Lasers, Optical Amplifiers, Laser Optics
Received: 2024/09/28 | Revised: 2025/07/24 | Accepted: 2025/07/10 | Published: 2024/10/7

References
1. W. Koechner, Solid-State Laser Engineering, Springer Science, New York, 2006.
2. A.E. Siegman, Lasers, University Science Books, California, pp. 841-846, 1986.
3. W.C. Scott and M.D. Wit, "Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser," Appl. Phys. Lett., Vol. 18, pp. 3-4, 1971. [DOI:10.1063/1.1653466]
4. K.H. Witte, "A reliable low-maintenance flashlamp-pumped Ti:Sapphire laser operating at 120-PPS," Lasers, Vol. 93, pp. 6-9, 1993.
5. V. Ashoori, M. Shayganmanesh, and S. Radmard, Heat Generation and Removal in Solid State Lasers, An Overview of Heat Transfer Phenomena, In Tech, pp. 341-376, 2012. [DOI:10.5772/52381]
6. M. Rupp, M. Eichhorn, and Ch. Kieleck, "Iterative 3D modeling of thermal effects in end-pumped continues-wave Ho3+:YAG lasers," Appl. Phys. B: Lasers Opt., Vol. 129, pp. 4(1 11), 2023. [DOI:10.1007/s00340-022-07939-z]
7. J. Wang, T. Cheng, L. Wang, J. Yang, D. Sun, Sh. Yin, X. Wu, and H. Jiang, "Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser," Laser Phys. Lett., Vol. 12, pp. 105004(1-4), 2015. [DOI:10.1088/1612-2011/12/10/105004]
8. K. Dobek, "Thermal lensing: outside of the lasing medium," Appl. Phys. B, Vol. 128, pp. 18(1 21), 2022. [DOI:10.1007/s00340-021-07718-2]
9. J. Di, Y. Yu, Zh. Wang, W. Qu, Ch. Y. Cheng, and J. Zhao, "Quantitative measurement of thermal lensing in diode-side-pumped Nd:YAG laser by use of digital holographic interferometry," Opt. Express, Vol. 24, pp. 28185-28193, 2016. [DOI:10.1364/OE.24.028185] [PMID]
10. D.C. Hanna, C.G. Sawyers, and M.A. Yuratich, "Telescopics resonators for large-volume TEM00-mode operation," Opt. Quant. Electron., Vol. 13, pp. 493-507, 1981. [DOI:10.1007/BF00668347]
11. H. Yang, J. Liu, D. Shen, S. Ch. Tam, Y.L. Lam, W. Xle, and T. Kobayashi, "A flash-lamp-pumped Nd:YAG laser with dual-telescopic optics configuration," Opt. Rev., Vol. 8, pp. 163-168, 2001. [DOI:10.1007/s10043-001-0163-9]
12. Th. Graf, E. Wyss, M. Roth, and H.P. Weber, "Laser resonator with balanced thermal lenses," Opt. Commun., Vol. 190(1-6), pp. 327-331, 2001. [DOI:10.1016/S0030-4018(01)01111-7]
13. D. Razzaghi, M. Arshadi Pirlar, and M. Sasani Ghamsari, "Flashlamp-pumped Nd: YAG laser with higher pulse energy using TiO2 nanofluid as coolant," J. Mod. Optic, Vol. 66, pp. 26 32, 2019. [DOI:10.1080/09500340.2018.1510556]
14. P.A. Routledge, A.J. Berry, and T.A. King, "A flashlamp-pumped dye laser in a telescopic resonator configuration," Opt. Acta., Vol. 33, pp. 445-451, 1986. [DOI:10.1080/713821958]
15. S. Yoshida, K. Shimizu, H. Tahil, and I. Tanaka, "Application of a telescopic resonator to high-power chemical oxygen-iodine lasers," IEEE J. Quantum. Elect., Vol. 30, pp. 160 166, 1994. [DOI:10.1109/3.272075]
16. Y.Z. Virnik, V.G. Krutova, A.A. Stepanov, and V.A. Shcheglov, "Design of a CW HF laser with a spherical telescopic resonator," Sov. J. Quantum Electron., Vol. 7, pp. 1423, 1977. [DOI:10.1070/QE1977v007n11ABEH008256]
17. P.G. Gobbi and G. Reali, "Stable telescopic resonators, unstable resonators and new cavity designs applied to high energy laser engineering," Proc. SPIE, Vol. 492, pp. 68-77, 1985. [DOI:10.1117/12.943660]
18. A.V. Kudryashov and H. Weber, Laser Resonators: Novel Design and Development, SPIE Press, 1999.
19. C. Dascalu, "High-power TEM00 composite solid-state laser with a short, telescopic resonator," J. Optoelectron. Adv. M., Vol. 10, pp. 1530-1533, 2008.
20. P.H. Sarkies, "A stable YAG resonator yielding a beam of very low divergence and high output energy," Optics Communications, Vol. 31, pp. 189 192, 1979. [DOI:10.1016/0030-4018(79)90301-8]
21. E. Tasal and M. S. Kilickaya, "Relations for different resonators of Nd: Glass and Nd: YAG lasers," Turk. J. Phys., Vol. 26, pp. 109-120, 2002.
22. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Optics., Vol. 5, pp. 1550 1567, 1966. [DOI:10.1364/AO.5.001550] [PMID]
23. J.T. Verdeyen, Laser Electronics, Prentice-Hall, New Jersey, 1989.
24. M. Shayganmanesh, M.H. Daemi, Zh. Osgoui, S. Radmard, and S.Sh. Kazemi, "Measurement of thermal lensing effects in high power thin disk laser," Opt. Laser Technol., Vol. 44, pp. 2292-2296, 2014. [DOI:10.1016/j.optlastec.2012.02.019]
25. M.R. Moghaddam, D. Razzaghi, M. Akbari, M. Barzan, and M. Ruzbehani, "Experimental investigation of thermal lens effect in a flashlamp pumped CTH:YAG laser rod," Optik, Vol. 247, pp. 167826(1-12), 2021. [DOI:10.1016/j.ijleo.2021.167826]
26. D. Razzaghi, M.R. Moghaddam, and M. Akbari, "Thermal lens effect induced in a Cr,Tm,Ho:YAG laser rod: A comparison between under lasing and non-lasing conditions," Infrared Phys. Techn., Vol. 125, pp. 104287, 2022. [DOI:10.1016/j.infrared.2022.104287]
27. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1996.
28. D.G. Lancaster and J.M. Dawes, "Thermal-lens measurement of a quasi-steady-state repetitively flashlamp-pumped Cr, Tm, Ho:YAG laser," Opt. Laser Technol., Vol. 30, pp. 103-108, 1998. [DOI:10.1016/S0030-3992(98)00021-8]
29. B. Lu, Y. Liao, W. Chen, and B. Cai, "Theoretical study of deeply thermo-stable telescopic resonators," Proc. SPIE, Vol. 1021, pp. 168-174, 1989. [DOI:10.1117/12.950089]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb