Volume 18, Issue 1 (10-2024)                   IJOP 2024, 18(1): 19-32 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bakhsheshi F, Mabhouti K, Naderali R, mahmoodlou A. Quantum Cascade Laser Subject to Filtered-phase-Conjugate Feedback: Stability, Root Locus Analysis, and Particle Swarm Optimization. IJOP 2024; 18 (1) :19-32
URL: http://ijop.ir/article-1-570-en.html
1- Department of Physics, Faculty of Science, Urmia University, Urmia, Iran
2- Department of Physics Education, Farhangian University, Tehran, Iran
Abstract:   (128 Views)
Quantum cascade lasers (QCLs) are sources in mid-infrared and terahertz (THz) regions used in the sensing domain and quality control. This paper investigates QCLs subject to filtered phase-conjugate feedback (FPCF). Instabilities can be detected using the graphical method of pole analysis and the particle swarm optimization algorithm, which allows us to identify and characterize the limitation and critical relations between the laser operating parameters. There is good agreement between the two methods to stability boundaries. The effects of FPCF in comparison with conventional optical feedback (COF), phase-conjugate feedback (PCF), and tilted optical feedback (TOF) show that the penetration time factor has a significant and greater influence on the stability of QCL subject to FPCF. These results are in perfect agreement with previous experimental and analytical studies.
Full-Text [PDF 1232 kb]   (43 Downloads)    
Type of Study: Research | Subject: Semiconductor Lasers
Received: 2024/07/30 | Revised: 2025/07/12 | Accepted: 2025/07/10 | Published: 2024/10/7

References
1. Laser Technol., vol. 148, pp. 107741, 2022. [DOI:10.1016/j.optlastec.2021.107741]
2. X.-G. Wang, B.-B. Zhao, Y. Deng, V. Kovanis, and C. Wang, "Nonlinear dynamics of a quantum cascade laser with tilted optical feedback," Phys. Rev. A., vol. 103, pp. 023528(1-7), 2021. [DOI:10.1103/PhysRevA.103.023528]
3. D.E. Eba, A.D. Mengue, and B.E. Zobo, "Multiscroll chaotic attractors in Optical Injected Semiconductor Laser Driven by a Resonant Tunneling Diode Current," Optik (Stuttg)., vol. 212, pp. 164740(1-8), 2020. [DOI:10.1016/j.ijleo.2020.164740]
4. X. Liao. X. Wang, K. Zhou, W. Guan, Z. Li, X. Ma, C. Wang, J.C. Cao, C. Wang, and H. Li, "Terahertz quantum cascade laser frequency combs with optical feedback," Opt. Express, vol. 30, pp. 35937-35950, 2022. [DOI:10.1364/OE.467992] [PMID]
5. J.Y. Law and G. P. Agrawal, "Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron., vol. 3, pp. 353-358, 1997. [DOI:10.1109/2944.605678]
6. J. Ohtsubo, Semiconductor Lasers, in Springer Series in Optical Sciences, Springer International Publishing., vol. 111, pp. XXV- 666, 2017. [DOI:10.1007/978-3-319-56138-7]
7. G. Friart, G. Van der Sande, G. Verschaffelt, and T. Erneux, "Analytical stability boundaries for quantum cascade lasers subject to optical feedback," Phys. Rev. E, vol. 93, pp. 052201(1 6), 2016. [DOI:10.1103/PhysRevE.93.052201] [PMID]
8. L. Weicker, D. Wolfersberger, and M. Sciamanna, "Stability analysis of a quantum cascade laser subject to phase-conjugate feedback," Phys. Rev. E, vol. 98, pp. 012214(1 7), 2018. [DOI:10.1103/PhysRevE.98.012214] [PMID]
9. A. Murakami and J. Ohtsubo, "Dynamics and linear stability analysis in semiconductor lasers with phase-conjugate feedback," IEEE J. Quantum Electron., vol. 34, pp. 1979-1986, 2002. [DOI:10.1109/3.720236]
10. L. Weicker, T. Erneux, D. Wolfersberger, and M. Sciamanna, "Laser diode nonlinear dynamics from a filtered phase-conjugate optical feedback," Phys. Rev. E., vol. 92, pp. 022906(1 7), 2015. [DOI:10.1103/PhysRevE.92.022906] [PMID]
11. B.-B. Zhao, X.-G. Wang, and C. Wang, "Low-Frequency Oscillations in Quantum Cascade Lasers With Tilted Optical Feedback," IEEE J. Sel. Top. Quantum Electron., vol. 28, pp. 1-7, 2022. [DOI:10.1109/JSTQE.2021.3091186]
12. O. Spitz, J. Wu, M. Carras, C.-W. Wong, and F. Grillot, "Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser," Sci. Rep., vol. 9, no. 1, pp. 4451(1-9), 2019. [DOI:10.1038/s41598-019-40861-7] [PMID] []
13. J. Liu, Z. Tong, W. Zhang, J. Li, and Y. Li, "Switchable and tunable multi-wavelength erbium-doped random distributed feedback fiber laser based on a compound filter," Optik (Stuttg)., vol. 241, pp. 167015(1-9), 2021. [DOI:10.1016/j.ijleo.2021.167015]
14. V. Girardeau, O. Jacquin, O. Hugon, and E. Lacot, "Ultrasound vibration measurements based on laser optical feedback imaging," Appl. Opt., vol. 57, pp. 7634-7643, 2018. [DOI:10.1364/AO.57.007634] [PMID]
15. A. Jafari, K. Mabhouti, S. Afrang, and A. Siahcheshm, "Control of instability in a semiconductor laser using a functional pump current generator with a dynamical parameter," Opt. Laser Technol., vol. 44, pp. 1398-1405, 2012. [DOI:10.1016/j.optlastec.2011.11.050]
16. G. Abbasi and Z. Alaie, "The impact of additional injected signals on the stability and bandwidth of the quantum cascade lasers with external cavities," Optik (Stuttg)., vol. 254, pp. 168653, 2022. [DOI:10.1016/j.ijleo.2022.168653]
17. T. Erneux, V. Kovanis, and A. Gavrielides, "Nonlinear dynamics of an injected quantum cascade laser," Phys. Rev. E, vol. 88, pp. 032907(1-8), 2013. [DOI:10.1103/PhysRevE.88.032907] [PMID]
18. O. Spitz and F. Grillot, "A review of recent results of mid-infrared quantum cascade photonic devices operating under external optical control," J. Phys. Photon., vol. 4, pp. 022001(1 21), 2022. [DOI:10.1088/2515-7647/ac5494]
19. R. Heinrich, A. Popescu, R. Strzoda, A. Hangauer, and S. Höfling, "High resolution quantitative multi-species hydrocarbon gas sensing with a cw external cavity quantum cascade laser based spectrometer in the 6-11 μ m range," J. Appl. Phys., vol. 125, pp. 134501(1 10), 2019. [DOI:10.1063/1.5082168]
20. F.-Y. Lin and J.-M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 991-997, 2004. [DOI:10.1109/JSTQE.2004.835296]
21. O. Spitz, P. Didier, L. Durupt, T. Diaz , A. Daniel, Alexei N, L. Cerutti, and F. Grillot, "Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices," IEEE J. Sel. Top. Quantum Electron., vol. 28, pp. 1-9, 2022. [DOI:10.1109/JSTQE.2021.3096316]
22. Y.-B. Peng, B.-B. Zhao, and C. Wang, "Nonlinear dynamics of a quantum cascade laser with optical injection," Opt. Express, vol. 30, pp. 27593-27601, 2022. [DOI:10.1364/OE.459225] [PMID]
23. D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, "Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror," IEEE J. Quantum Electron., vol. 33, pp. 838 844, 1997. [DOI:10.1109/3.572159]
24. D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, "Semiconductor laser coupled to a finite-response time phase-conjugate mirror," Physics and Simulation of Optoelectronic Devices., vol. 2693, pp. 689 700, 1996. [DOI:10.1117/12.239004]
25. T. Gensty, W. Elsäßer, and C. Mann, "Intensity noise properties of quantum cascade lasers," Opt. Express, vol. 13, pp. 2032-2039, 2005. [DOI:10.1364/OPEX.13.002032] [PMID]
26. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge University Press, vol. 14, pp. 287, 1999. [DOI:10.1017/CBO9780511628870]
27. S. Behnia, S. Afrang, A. Akhshani, and K. Mabhouti, "A novel method for controlling chaos in external cavity semiconductor laser," Opt.-Int. J. Light Electron Opt. (Optik), vol. 124, pp. 757-764, 2013. [DOI:10.1016/j.ijleo.2012.01.013]
28. H. Chapellat and S. P. Bhattacharyya, "A generalization of Kharitonov's theorem; Robust stability of interval plants," IEEE Trans. Automat. Contr., vol. 34, pp. 306-311, 1989. [DOI:10.1109/9.16420]
29. Nusret Tan and D. P. Atherton, "Stability and performance analysis in an uncertain world," Comput. Control Eng. J., vol. 11, pp. 91-101, 2000. [DOI:10.1049/cce:20000205]
30. A. G. Gad, "Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review," Arch. Comput. Methods Eng., vol. 29, pp. 2531-2561, 2022. [DOI:10.1007/s11831-021-09694-4]
31. A. Gupta and S. Srivastava, "Comparative Analysis of Ant Colony and Particle Swarm Optimization Algorithms for Distance Optimization," Procedia Comput. Sci., vol. 173, pp. 245-253, 2020. [DOI:10.1016/j.procs.2020.06.029]
32. M. C. M. Teixeira, E. Assuncao, and E. R. M. D. Machado, "A Method for Plotting the Complementary Root Locus Using the Root-Locus (Positive Gain) Rules," IEEE Trans. Educ., vol. 47, pp. 405-409, Aug. 2004. [DOI:10.1109/TE.2004.825068]
33. D. Wang, D. Tan, and L. Liu, "Particle swarm optimization algorithm: an overview," Soft Comput., vol. 22, pp. 387-408, Jan. 2018. [DOI:10.1007/s00500-016-2474-6]
34. L. Jumpertz, Nonlinear photonics in mid-infrared quantum cascade lasers, Springer theses, p. XXIII-134, 2017. [DOI:10.1007/978-3-319-65879-7]
35. J. Faist, Quantum Cascade Lasers. Oxford University Press, 2013. [DOI:10.1093/acprof:oso/9780198528241.001.0001]
36. S. Pawłowski and M. Mączka, "Optimisation of QCL Structures Modelling by Polynomial Approximation," Materials, vol. 15, pp. 5715(1 18), 2022. [DOI:10.3390/ma15165715] [PMID] []
37. L. Jumpertz, F. Michel, R. Pawlus, W. Elsässer, K. Schires, M. Carras, and F. Grillot, "Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques," AIP Adv., vol. 6, pp. 015212(1-7), 2016. [DOI:10.1063/1.4940767]
38. T. Erneux, A. Gavrielides, K. Green, and B. Krauskopf, "External cavity modes of semiconductor lasers with phase-conjugate feedback," Phys. Rev. E, vol. 68, pp. 66205(1 9), 2003. [DOI:10.1103/PhysRevE.68.066205] [PMID]
39. M. C. M. Teixeira, "Direct expressions for Ogata's lead-lag design method using root locus," IEEE Trans. Educ., vol. 37, pp. 63-64, 1994. [DOI:10.1109/13.275189]
40. M. C. M. Teixeira and E. Assuncao, "On lag controllers: design and implementation," IEEE Trans. Educ., vol. 45, pp. 285-288, 2002. [DOI:10.1109/TE.2002.1024622]
41. K. Ogata and J. Brewer "Modern Control Engineering," J. Dyn. Sys., Meas., Control., vol. 93, p. 63, 1971. [DOI:10.1115/1.3426465]
42. [42] L.A. Penny, Root locus analysis with special partitioning, Monterey, California. Naval Postgraduate School, Engineering, 1967.
43. [43] D. Lenstra, G. Vemuri, and M. Yousefi, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, John Wiley & Sons., pp. 55-80, 2005. [DOI:10.1002/0470856211.ch3]
44. [44] G. Zhang, X. Shao, P. Li, and L. Gao, "An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem," Comput. Ind. Eng., vol. 56, pp. 1309-1318, 2009. [DOI:10.1016/j.cie.2008.07.021]
45. [45] Q. Bai, "Analysis of Particle Swarm Optimization Algorithm," Comput. Inf. Sci., vol. 3, pp. 180-184, 2010. [DOI:10.5539/cis.v3n1p180]
46. [46] V. Selvi and D. R. Umarani, "Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques," Int. J. Comput. Appl., vol. 5, pp. 1-6, 2010. [DOI:10.5120/908-1286]
47. [47] F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M.S. Vitiello, H. E. Beere, D.A. Ritchie, and G. Scamarcio, "Intrinsic stability of quantum cascade lasers against optical feedback," Opt. Express., vol. 21, pp. 13748-13757, 2013. [DOI:10.1364/OE.21.013748] [PMID]
48. [48] O. Spitz, J. Wu, A. Herdt, M. Carras, W. Elsaber, C-W. Wong, and F. Grillot, "Investigation of Chaotic and Spiking Dynamics in Mid-Infrared Quantum Cascade Lasers Operating Continuous-Waves and Under Current Modulation," IEEE J. Sel. Top. Quantum Electron., vol. 25, pp. 1-11, 2019. [DOI:10.1109/JSTQE.2019.2937445]
49. [49] M. C. Simon Ferré, L. Jumpertz, Kevin Schires, M. Carras, and F. Grillot "Nonlinear dynamics of quantum cascade lasers with optical feedback," Conf. SPIE OPTO., 2015.
50. [50] Z. Abdul Sattar and K. A. Shore, "Phase Conjugate Feedback Effects in Nano-Lasers," IEEE J. Quantum Electron., vol. 52, pp. 1-8, 2016. [DOI:10.1109/JQE.2016.2535339]
51. [51] G. Bouchez, T. Malica, D. Wolfersberger, and M. Sciamanna, "Manipulating the chaos bandwidth of a semiconductor laser subjected to phase-conjugate feedback," in Semiconductor Lasers and Laser Dynamics IX., vol. 11356, pp. 106-113, 2020. [DOI:10.1117/12.2559627]
52. [52] W. A. van der Graaf, L. Pesquera, and D. Lenstra, "Stability of a diode laser with phase-conjugate feedback," Opt. Lett., vol. 23, pp. 256 258, 1998. [DOI:10.1364/OL.23.000256] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb