1. Laser Technol., vol. 148, pp. 107741, 2022. [
DOI:10.1016/j.optlastec.2021.107741]
2. X.-G. Wang, B.-B. Zhao, Y. Deng, V. Kovanis, and C. Wang, "Nonlinear dynamics of a quantum cascade laser with tilted optical feedback," Phys. Rev. A., vol. 103, pp. 023528(1-7), 2021. [
DOI:10.1103/PhysRevA.103.023528]
3. D.E. Eba, A.D. Mengue, and B.E. Zobo, "Multiscroll chaotic attractors in Optical Injected Semiconductor Laser Driven by a Resonant Tunneling Diode Current," Optik (Stuttg)., vol. 212, pp. 164740(1-8), 2020. [
DOI:10.1016/j.ijleo.2020.164740]
4. X. Liao. X. Wang, K. Zhou, W. Guan, Z. Li, X. Ma, C. Wang, J.C. Cao, C. Wang, and H. Li, "Terahertz quantum cascade laser frequency combs with optical feedback," Opt. Express, vol. 30, pp. 35937-35950, 2022. [
DOI:10.1364/OE.467992] [
PMID]
5. J.Y. Law and G. P. Agrawal, "Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron., vol. 3, pp. 353-358, 1997. [
DOI:10.1109/2944.605678]
6. J. Ohtsubo, Semiconductor Lasers, in Springer Series in Optical Sciences, Springer International Publishing., vol. 111, pp. XXV- 666, 2017. [
DOI:10.1007/978-3-319-56138-7]
7. G. Friart, G. Van der Sande, G. Verschaffelt, and T. Erneux, "Analytical stability boundaries for quantum cascade lasers subject to optical feedback," Phys. Rev. E, vol. 93, pp. 052201(1 6), 2016. [
DOI:10.1103/PhysRevE.93.052201] [
PMID]
8. L. Weicker, D. Wolfersberger, and M. Sciamanna, "Stability analysis of a quantum cascade laser subject to phase-conjugate feedback," Phys. Rev. E, vol. 98, pp. 012214(1 7), 2018. [
DOI:10.1103/PhysRevE.98.012214] [
PMID]
9. A. Murakami and J. Ohtsubo, "Dynamics and linear stability analysis in semiconductor lasers with phase-conjugate feedback," IEEE J. Quantum Electron., vol. 34, pp. 1979-1986, 2002. [
DOI:10.1109/3.720236]
10. L. Weicker, T. Erneux, D. Wolfersberger, and M. Sciamanna, "Laser diode nonlinear dynamics from a filtered phase-conjugate optical feedback," Phys. Rev. E., vol. 92, pp. 022906(1 7), 2015. [
DOI:10.1103/PhysRevE.92.022906] [
PMID]
11. B.-B. Zhao, X.-G. Wang, and C. Wang, "Low-Frequency Oscillations in Quantum Cascade Lasers With Tilted Optical Feedback," IEEE J. Sel. Top. Quantum Electron., vol. 28, pp. 1-7, 2022. [
DOI:10.1109/JSTQE.2021.3091186]
12. O. Spitz, J. Wu, M. Carras, C.-W. Wong, and F. Grillot, "Chaotic optical power dropouts driven by low frequency bias forcing in a mid-infrared quantum cascade laser," Sci. Rep., vol. 9, no. 1, pp. 4451(1-9), 2019. [
DOI:10.1038/s41598-019-40861-7] [
PMID] [
]
13. J. Liu, Z. Tong, W. Zhang, J. Li, and Y. Li, "Switchable and tunable multi-wavelength erbium-doped random distributed feedback fiber laser based on a compound filter," Optik (Stuttg)., vol. 241, pp. 167015(1-9), 2021. [
DOI:10.1016/j.ijleo.2021.167015]
14. V. Girardeau, O. Jacquin, O. Hugon, and E. Lacot, "Ultrasound vibration measurements based on laser optical feedback imaging," Appl. Opt., vol. 57, pp. 7634-7643, 2018. [
DOI:10.1364/AO.57.007634] [
PMID]
15. A. Jafari, K. Mabhouti, S. Afrang, and A. Siahcheshm, "Control of instability in a semiconductor laser using a functional pump current generator with a dynamical parameter," Opt. Laser Technol., vol. 44, pp. 1398-1405, 2012. [
DOI:10.1016/j.optlastec.2011.11.050]
16. G. Abbasi and Z. Alaie, "The impact of additional injected signals on the stability and bandwidth of the quantum cascade lasers with external cavities," Optik (Stuttg)., vol. 254, pp. 168653, 2022. [
DOI:10.1016/j.ijleo.2022.168653]
17. T. Erneux, V. Kovanis, and A. Gavrielides, "Nonlinear dynamics of an injected quantum cascade laser," Phys. Rev. E, vol. 88, pp. 032907(1-8), 2013. [
DOI:10.1103/PhysRevE.88.032907] [
PMID]
18. O. Spitz and F. Grillot, "A review of recent results of mid-infrared quantum cascade photonic devices operating under external optical control," J. Phys. Photon., vol. 4, pp. 022001(1 21), 2022. [
DOI:10.1088/2515-7647/ac5494]
19. R. Heinrich, A. Popescu, R. Strzoda, A. Hangauer, and S. Höfling, "High resolution quantitative multi-species hydrocarbon gas sensing with a cw external cavity quantum cascade laser based spectrometer in the 6-11 μ m range," J. Appl. Phys., vol. 125, pp. 134501(1 10), 2019. [
DOI:10.1063/1.5082168]
20. F.-Y. Lin and J.-M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 991-997, 2004. [
DOI:10.1109/JSTQE.2004.835296]
21. O. Spitz, P. Didier, L. Durupt, T. Diaz , A. Daniel, Alexei N, L. Cerutti, and F. Grillot, "Free-Space Communication With Directly Modulated Mid-Infrared Quantum Cascade Devices," IEEE J. Sel. Top. Quantum Electron., vol. 28, pp. 1-9, 2022. [
DOI:10.1109/JSTQE.2021.3096316]
22. Y.-B. Peng, B.-B. Zhao, and C. Wang, "Nonlinear dynamics of a quantum cascade laser with optical injection," Opt. Express, vol. 30, pp. 27593-27601, 2022. [
DOI:10.1364/OE.459225] [
PMID]
23. D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, "Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror," IEEE J. Quantum Electron., vol. 33, pp. 838 844, 1997. [
DOI:10.1109/3.572159]
24. D. H. DeTienne, G. R. Gray, G. P. Agrawal, and D. Lenstra, "Semiconductor laser coupled to a finite-response time phase-conjugate mirror," Physics and Simulation of Optoelectronic Devices., vol. 2693, pp. 689 700, 1996. [
DOI:10.1117/12.239004]
25. T. Gensty, W. Elsäßer, and C. Mann, "Intensity noise properties of quantum cascade lasers," Opt. Express, vol. 13, pp. 2032-2039, 2005. [
DOI:10.1364/OPEX.13.002032] [
PMID]
26. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge University Press, vol. 14, pp. 287, 1999. [
DOI:10.1017/CBO9780511628870]
27. S. Behnia, S. Afrang, A. Akhshani, and K. Mabhouti, "A novel method for controlling chaos in external cavity semiconductor laser," Opt.-Int. J. Light Electron Opt. (Optik), vol. 124, pp. 757-764, 2013. [
DOI:10.1016/j.ijleo.2012.01.013]
28. H. Chapellat and S. P. Bhattacharyya, "A generalization of Kharitonov's theorem; Robust stability of interval plants," IEEE Trans. Automat. Contr., vol. 34, pp. 306-311, 1989. [
DOI:10.1109/9.16420]
29. Nusret Tan and D. P. Atherton, "Stability and performance analysis in an uncertain world," Comput. Control Eng. J., vol. 11, pp. 91-101, 2000. [
DOI:10.1049/cce:20000205]
30. A. G. Gad, "Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review," Arch. Comput. Methods Eng., vol. 29, pp. 2531-2561, 2022. [
DOI:10.1007/s11831-021-09694-4]
31. A. Gupta and S. Srivastava, "Comparative Analysis of Ant Colony and Particle Swarm Optimization Algorithms for Distance Optimization," Procedia Comput. Sci., vol. 173, pp. 245-253, 2020. [
DOI:10.1016/j.procs.2020.06.029]
32. M. C. M. Teixeira, E. Assuncao, and E. R. M. D. Machado, "A Method for Plotting the Complementary Root Locus Using the Root-Locus (Positive Gain) Rules," IEEE Trans. Educ., vol. 47, pp. 405-409, Aug. 2004. [
DOI:10.1109/TE.2004.825068]
33. D. Wang, D. Tan, and L. Liu, "Particle swarm optimization algorithm: an overview," Soft Comput., vol. 22, pp. 387-408, Jan. 2018. [
DOI:10.1007/s00500-016-2474-6]
34. L. Jumpertz, Nonlinear photonics in mid-infrared quantum cascade lasers, Springer theses, p. XXIII-134, 2017. [
DOI:10.1007/978-3-319-65879-7]
35. J. Faist, Quantum Cascade Lasers. Oxford University Press, 2013. [
DOI:10.1093/acprof:oso/9780198528241.001.0001]
36. S. Pawłowski and M. Mączka, "Optimisation of QCL Structures Modelling by Polynomial Approximation," Materials, vol. 15, pp. 5715(1 18), 2022. [
DOI:10.3390/ma15165715] [
PMID] [
]
37. L. Jumpertz, F. Michel, R. Pawlus, W. Elsässer, K. Schires, M. Carras, and F. Grillot, "Measurements of the linewidth enhancement factor of mid-infrared quantum cascade lasers by different optical feedback techniques," AIP Adv., vol. 6, pp. 015212(1-7), 2016. [
DOI:10.1063/1.4940767]
38. T. Erneux, A. Gavrielides, K. Green, and B. Krauskopf, "External cavity modes of semiconductor lasers with phase-conjugate feedback," Phys. Rev. E, vol. 68, pp. 66205(1 9), 2003. [
DOI:10.1103/PhysRevE.68.066205] [
PMID]
39. M. C. M. Teixeira, "Direct expressions for Ogata's lead-lag design method using root locus," IEEE Trans. Educ., vol. 37, pp. 63-64, 1994. [
DOI:10.1109/13.275189]
40. M. C. M. Teixeira and E. Assuncao, "On lag controllers: design and implementation," IEEE Trans. Educ., vol. 45, pp. 285-288, 2002. [
DOI:10.1109/TE.2002.1024622]
41. K. Ogata and J. Brewer "Modern Control Engineering," J. Dyn. Sys., Meas., Control., vol. 93, p. 63, 1971. [
DOI:10.1115/1.3426465]
42. [42] L.A. Penny, Root locus analysis with special partitioning, Monterey, California. Naval Postgraduate School, Engineering, 1967.
43. [43] D. Lenstra, G. Vemuri, and M. Yousefi, Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, John Wiley & Sons., pp. 55-80, 2005. [
DOI:10.1002/0470856211.ch3]
44. [44] G. Zhang, X. Shao, P. Li, and L. Gao, "An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem," Comput. Ind. Eng., vol. 56, pp. 1309-1318, 2009. [
DOI:10.1016/j.cie.2008.07.021]
45. [45] Q. Bai, "Analysis of Particle Swarm Optimization Algorithm," Comput. Inf. Sci., vol. 3, pp. 180-184, 2010. [
DOI:10.5539/cis.v3n1p180]
46. [46] V. Selvi and D. R. Umarani, "Comparative Analysis of Ant Colony and Particle Swarm Optimization Techniques," Int. J. Comput. Appl., vol. 5, pp. 1-6, 2010. [
DOI:10.5120/908-1286]
47. [47] F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M.S. Vitiello, H. E. Beere, D.A. Ritchie, and G. Scamarcio, "Intrinsic stability of quantum cascade lasers against optical feedback," Opt. Express., vol. 21, pp. 13748-13757, 2013. [
DOI:10.1364/OE.21.013748] [
PMID]
48. [48] O. Spitz, J. Wu, A. Herdt, M. Carras, W. Elsaber, C-W. Wong, and F. Grillot, "Investigation of Chaotic and Spiking Dynamics in Mid-Infrared Quantum Cascade Lasers Operating Continuous-Waves and Under Current Modulation," IEEE J. Sel. Top. Quantum Electron., vol. 25, pp. 1-11, 2019. [
DOI:10.1109/JSTQE.2019.2937445]
49. [49] M. C. Simon Ferré, L. Jumpertz, Kevin Schires, M. Carras, and F. Grillot "Nonlinear dynamics of quantum cascade lasers with optical feedback," Conf. SPIE OPTO., 2015.
50. [50] Z. Abdul Sattar and K. A. Shore, "Phase Conjugate Feedback Effects in Nano-Lasers," IEEE J. Quantum Electron., vol. 52, pp. 1-8, 2016. [
DOI:10.1109/JQE.2016.2535339]
51. [51] G. Bouchez, T. Malica, D. Wolfersberger, and M. Sciamanna, "Manipulating the chaos bandwidth of a semiconductor laser subjected to phase-conjugate feedback," in Semiconductor Lasers and Laser Dynamics IX., vol. 11356, pp. 106-113, 2020. [
DOI:10.1117/12.2559627]
52. [52] W. A. van der Graaf, L. Pesquera, and D. Lenstra, "Stability of a diode laser with phase-conjugate feedback," Opt. Lett., vol. 23, pp. 256 258, 1998. [
DOI:10.1364/OL.23.000256] [
PMID]