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Abstract— In this paper, we propose a 
theoretical scheme for the generation of non-
classical states of the cavity field in a system of a 
single trapped atom via controlling the Lamb-
Dicke parameter. By exploiting the super-
operator method, we obtain an analytical 
expression for the density operator of the 
system by which we examine the dynamical 
behaviors of the atomic population inversion, 
the phase-space Husimi Q-function as well as 
the von Neumann quantum entropy of the 
cavity-field. The results reveal that at certain 
periods of time one of the cavity-field 
quadratures may be squeezed and the two sub-
systems of the trapped atom and the cavity field 
are entangled. Moreover, we find that the 
atomic spontaneous emission and the cavity-
field damping destroy the nonclassical 
characteristics of the cavity field. 
 
Keywords: Quantum state engineering, non-
classical states, trapped atom, Lamb-Dicke 
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I. INTRODUCTION 
The generation and manipulation of 
nonclassical quantum states of the radiation 
field and atomic systems continue to attract 
great theoretical and experimental interest. 
These states are of interest from the standpoint 
of quantum measurement concepts and may 
facilitate other measurements such as sensitive 
detection  [1-3] or quantum computation [4,5]. 
The quantized motional states of trapped 
atoms or ions in confining potentials offer 

interesting possibilities for a variety of 
applications, such as the storage and 
manipulation of quantum information (e.g. 
‘qubits’), with particular reference to quantum 
logic operations and quantum computing[6-8]. 

In connection with quantum state engineering, 
the system of a single trapped atom strongly 
coupled to the electromagnetic field of a high-
Q optical cavity within the setting of cavity 
quantum electrodynamics (CQED) has 
attracted considerable attention[9]. In a cavity 
QED system both the mechanical effects of 
optical resonator on the quantized center-of-
mass motion of the trapped atom [10] and the 
nonlinearity induced by the correlation 
between the cavity field and the motion of the 
trapped atom lead to some interesting physical 
features. In particular, the relative stability of a 
trapped atom system against decoherence and 
the possibility of achieving different regimes 
of atom-field coupling in such a system 
provide an efficient way to control the 
intensity of atom-field interaction [11]. These 
features make such systems preferable in 
comparison with other ones in CQED. 
Furthermore, the entanglement between the 
cavity field and the trapped atom [12] not only 
provides a test bench for exploring the effects 
of quantum statistics of the radiation field on 
the internal dynamics of the atom [13,14] but 
also makes possible to transfer of quantum 
coherence between the atomic vibrational 
motion and the cavity field [15]. 
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The main purpose of the present contribution 
is investigation of the generation of non-
classical state for the radiation field in a 
single-mode cavity where a harmonically 
trapped atom is coupled to the cavity mode. In 
order to make the model under consideration 
more realistic, we take into account the atomic 
spontaneous emission as well as the cavity 
field damping (photon leakage). The paper is 
structured as follows. In Section II, we 
introduce the physical model of the system. In 
Section III, by applying a unitary 
transformation, we first derive an effective 
Hamiltonian for the system under 
consideration within the first order of the 
Lamb-Dicke approximation, and then by 
exploiting the super-operator method, we 
obtain an analytical expression for the density 
operator of the system. In section IV, we 
analyze the dynamical behaviors of the atomic 
population inversion, the phase-space Husimi 
Q function as well as the von Neumann 
quantum entropy of the cavity-field. 
Moreover, the dynamical evolution of the 
cavity-field entropy is investigated. Finally, 
we summarize our conclusions in section V. 

II. PHYSICAL MODEL  
As depicted in Fig. 1, we consider a  -type 
three-level atom of mass M confined in an 
optical resonator by an external harmonic 
potential with frequency . The atomic dipolar 
transition 1g e  is driven via the control 

laser of Rabi frequency L , while the atomic 

transition 2g e
 

couples to the optical 

resonator mode of frequency C  which is 

pumped by a laser of frequency P  and the 

vacuum Rabi frequency g and decays with rate 
. The excited state with the natural line-

width   decays to the states ( 1,2)jg j 
 
so 

that 1 2    . In order to have single- 

photon scattering in the system, prevent 
injection of additional noises of the pump 
laser, and simplify the calculations, we ignore 
the decay rate 1 . 

To describe the system, two essential 
assumptions are considered. First, we assume 
that the atom is tightly confined in the trap, 
such that the atomic wave packet width is 
much smaller than the lasers wavelengths, i.e., 

1k x  (where k is the laser wave number). 
Under such a condition, the so-called Lamb-
Dicke regime holds [17],  

2 1 1,m    (1) 

where m
 

is the mean vibrational phonon 

number, and   is the Lamb-Dicke parameter 
by which the effect of dynamics of light on the 
atomic motion is often well described [18]. 

 
Fig. 1. (a)Setup of the system. An atom is confined 
inside an optical resonator by an external harmonic 

trap of frequency . The angles L and C  give, 

respectively, the orientations of the laser and the 
cavity wave vectors with respect to the axis of the 
atomic motion. (b) Relevant electronic transitions 
[16]. 

Second, we suppose the initial mean number 
of photons in the cavity is much smaller than 
unity to ensure that pure quantum effects 
occur. Therefore, the Hamiltonian of the 
system can be expanded by means of 
perturbation theory. Expanding to the first 
order in the Lamb-Dicke parameter   such 
that only single-phonon transitions for external 
atomic degrees of freedom occur, the total 
Hamiltonian of the system is given by: 
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are the Hamiltonians corresponding to the 
zeroth and first orders in  , respectively, with 

â( †â ) and b̂  ( †b̂ ) the annihilation (creation) 
operators of photons and phonons (atomic 
vibrational motion). The operator 
ˆij i j  describes the transition between 

internal atomic states i  and j , L  and 

C denote, respectively, the angles between the 

cavity and laser wave vectors and the axis of 
the atomic motion, while   accounts for the 
displacement of the trap center with respect to 
the origin (Fig. 1). At zero order in the Lamb-
Dicke parameter, the internal and external 
atomic degrees of freedom are decoupled and 
the system is found to be in a stable state. 
However, in the first order of   , the atomic 
center of mass motion couples to the laser 
which leads to the occurrence of entanglement 
between the cavity field and the trapped atom. 

III.  EFFECTIVE HAMILTONIAN AND 

DENSITY OPERATOR OF THE SYSTEM 
The quantum dynamics of the system under 
consideration within the first order of the 
Lamb-Dicke parameter   can be described by 
an effective Hamiltonian. In the rotating wave 
approximation, and by using the unitary 

transformation 
int

(1)

0

ˆ ˆ( ,0) ( )
ti

U t Exp H t dt
      , 

the effective Hamiltonian in the interaction 
picture is obtained as [19]: 

2 2
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2
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  (5) 

where P C     is the cavity-probe 

detuning, 
11 ( )L e g       is the detuning 

between the pump laser and the atomic dipole 
transition 1g e , and 

22 ( )C C e g       is 

the detuning between the cavity mode and the 
atomic dipole transition 2g e . 

Comparing Eqs. (4) and (5) explicitly shows 
that increasing the contribution of the Lamb-
Dicke parameter gives rise to the enhancement 
of nonlinear effects in the atom-photon 
interaction. 

The nonlinear terms in the effective 
Hamiltonian of Eq. (5) appear as two-photon 
and two-phonon transitions as well as the anti-
Jaynes-Cummings terms. The density operator 
of the system obeys the master equation  

(1) (1)1 ˆ ˆˆ ˆ ˆ, ,eff

d
H L

dt i
       (6) 

in which the dissipations due to the cavity-
field decay at rate   and the atomic 
spontaneous emission at rate   appear in the 

Lindblad super-operator L̂ . Here, we assume 
that initially the cavity field is prepared in a 
coherent state, and the atom is in the internal 
state 2g  and vacuum vibrational 

state 0m  . By applying the super-operator 

method [20] and after some lengthy but 
straightforward calculation, we obtain the 
following analytical expression for (1)ˆ ( )t  

ˆ ˆˆ ˆ ˆ ˆ ˆ(1)ˆ ˆ( ) (0),At Bt Ct Dt Et Jt Ktt e e e e e e e   (7) 

where 
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IV. QUANTUM DYNAMICAL 

PROPERTIES OF THE SYSTEM 
In this section, we study the temporal 
evolution of the atomic population inversion 
and the dynamics of the phase space Q-
function, to investigate the possibility of 
quadrature squeezing of the cavity field. We 
also examine the time evolution of the von 
Neumann quantum entropy of the cavity field 
to investigate the generation of atom-field 
entanglement.  

A. Temporal evolution of the atomic 
population inversion 

Here, by using
(1)ˆ ( )t  given by Eq. (7), we can 

examine the time evolution of the atomic 
population inversion which is defined as 

(1)ˆˆ ˆ( ) ( ( ) )z zW t Tr t   
. In Figs. 2 (a) and 

2 (b) we have plotted W(t) as a function of the 
scaled time gt in the zeroth- and first- order of 
the Lamb-Dicke approximation, respectively. 
In this figure and all the subsequent figures, 
we analyze our results based on the 
experimentally feasible parameters given in 
Refs. [16, 21]. To understand the behaviors of 
the population inversion in the zeroth-and 
first- order of the parameter  we consider the 
collapse and revival times [22]. The time 
required for the first collapse and the 
following revival of the Rabi oscillations, 

denoted by tc and tr , respectively, can be 
estimated by the following analytical 
expressions: 

2 2 2 2
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(11) 

where n is the mean number of photons of the 
initial cavity field. It should be noted that the 
first revival of the oscillations occur if at least 
the terms oscillating with the greatest weights 
in W(t) acquire a phase difference of 2. 
Subsequent revivals occur at the phase 
differences being multiplicities of 2. 
Moreover, for the inversion to collapse, the 
oscillations associated with different values of 
photon number should be uncorrelated. 

As is seen in Fig. 2 (a), in the weak cavity-
field limit (low-photon number) and in the 
zeroth order of the Lamb-Dicke parameter, the 
Rabi oscillations can be identified and the 
atomic population inversion shows the 
collapse-revival repeatedly. However, in the 
first-order of the Lamb-Dicke approximation 
(Fig. 2(b)), as time goes on, the population 
inversion oscillates so drastically that the 
phenomenon of collapse-revival is not so 
clear. Furthermore, comparing the two figures 
reveals that for the both cases the atomic 
inversion oscillates around zero, which means 
that there is a same tendency of the cavity field 
and the atom to store the energy. Besides, in 
the first-order of approximation the collapse 
and revival times decrease in comparison with 
those correspond to the zeroth-order of 
approximation. In this manner subsequent 
revivals overlap and ultimately an irregular 
behavior of the time evolution of W(t) occurs. 
As we will show in the next sections, the 
nonclassical behaviors of the cavity field occur 

(8)  

(9)  
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in the time interval between the first collapse 
and the subsequent revival of the Rabi 
oscillations. 

 
Fig. 2. Time evolution of the atomic population 
inversion versus the scaled time gt in the zeroth- 
and  first-order of η. Here we have set: (a) 

1 2

, 0, 2.8 , 2.8 ,
3
0.08, 6 , 20 , 12 ,

3.6 , 0.4 , 2.6 .

L C L P

C

MHz MHz

n MHz MHz MHz

g MHz MHz MHz

  

 
 

      

    

  

and 

(b) with the same corresponding data used in Figure 
2 (a) and for 0.07, 0.1m   . 

B.  Phase-space Distribution function 
( , , )Q t 

 of the cavity field  

The quasi-probability distribution functions 
are important tools to give insight on the 
statistical description of quantum dynamics. 
They have become customary tools of 
analyzing experimental results in detecting 
quantum states of systems like an atom 
oscillating in a harmonic trap or for a mode 
oscillator. The quasi-probability distribution 
function is a c-number function that allows 
one to calculate the expectation values of a 
quantum system. The calculations of the quasi-
probability functions, given a density matrix, 
are often tedious task that involves integration 
over phase space variables.  

 
Fig. 3. Temporal evolution of the Q-function in the 

( , )  complex plane with the same corresponding 

data used in Figure 2: (a) t=1/4tr , (b) t= 1/2tr , (c) 
t=3/4tr , and (d) t = tr. 

The exception is the Q- function, which is 
simply expressed as the coherent expectation 
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values of the field density matrix and is 
therefore widely adopted to describe field 
dynamics in situations where the density 
matrix is easily computed. This distribution 
function has no singularity problems at all. It 
exists for any density matrix, is bounded, and 
is even greater than or equal to zero. It is 
defined by [22]  

(1)1
ˆ( , , ) ( )fQ t t    


  , (12) 

where  is the Glauber coherent state and 
(1) (1)ˆ ˆ( ) ( ( ))f atomρ t Tr ρ t is the reduced density 

matrix of the cavity-field in the first-order of 
the Lamb-Dicke approximation. In Fig. (3) we 
have sketched the density plot of the Q- 
function of the cavity field in the system under 
consideration for different times. As is seen, 
the Q-function splits into two blobs at 1/4tr 
(Fig. 3a), which represents the presence of 
quantum coherence in the system. Note that 
the cross sections of the two blobs have been 
squeezed along the Im axis. At t = 1/2tr the 
two blobs have the same amplitude but 
opposite phase that demonstrates the cavity-
field is in the coherent superposition of two 
squeezed states (Fig. 3b). At t = 3/4tr two 
blobs are extended (Fig. 4c), and finally at t=tr 
the two blobs join together completely which 
denotes that the state vector for the system 
cannot be written in a factored form. 

C. Quadrature squeezing of the cavity field  

One of the obvious features of the non-
classical radiation field is the quadrature 
squeezing. Squeezed light has less noise in one 
of the field quadratures than the vacuum level 
and an excess of noise in the other quadrature 
such that the Heisenberg uncertainty principle 
is satisfied. Therefore we define two 

quadrature 1X̂ and 2X̂ such that 

†

1

ˆ ˆˆ ,
2

a a
X


   

†

2

ˆ ˆˆ ,
2

a a
X

i


  (13) 

where 2/]ˆ,ˆ[ 21 iXX  . In this case, the 
squeezing would occur in one of the 
quadratures if [22, 23]  

2)or  1 (  01)(4)( 2  iXtS ii , (14) 

where 
2

2 2ˆ ˆ( ) ( ) ( )i i iX X t X t   ( i =1,2). 

Now, we consider the temporal behavior of 
S1(t) within the first order of the lamb-Dicke 
approximation, which gives information on 

squeezing of )(ˆ
1 tX . Numerical result is 

presnted in Fig. 4. We find that the quadrature 
squeezing occurs for short time in the very 
beginning of the interaction. In fact, within the 
first order of the Lamb-Dicke parameter, the 
system represents a non-linear characteristic so 
that by controlling the parameter  it is 
possible to achieve quadrature squeezing of 
the cavity field. It is interesting to note that the 
extending of blobs in plot of Q-function at t 
=3/4 tr and after that time (Figs. 4c, 4d) can be 
attributed to the effect of decoherence (the 
cavity field damping and atomic spontaneous 
emission). 

 
Fig. 4. Temporal evolution of the squeezing 
paprameter S1(t), corresponding to the squeezing of 
the quadrature componenet X1 versus the scaled 
time gt, with the same corresponding data used in 
Figure 2. The inset shows the data at shorter times. 

D. Time evolution of the cavity-field entropy 

Now, we consider the cavity-field entropy and 
examine the effect of the Lamb-Dicke 
parameter on its dynamical behavior. We use 
the field entropy as a measure for the degree of 
entanglement between the cavity field and the 
trapped atom. The quantum dynamics 
described by the effective Hamiltonian (5) 
leads to an entanglement between the cavity 
field and the trapped atom, which will be 
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quantified by the field entropy. As shown by 
Phoenix and Knight [24] the von Neumann 
quantum entropy is a convenient and sensitive 
measure of the entanglement of two interacting 
subsystems 

ˆ ˆ( ),s Tr Ln    (15) 

where ̂  is the density operator for a given 
quantum system and we have set the 
Boltzmann constant 1Bk  . If )(ts takes its 

minimum value to be zero, the cavity field and 
the atom are disentangled while if )(ts  takes 
its maximum value to be 1, the cavity field and 
the atom are in maximal entangled state. Araki 
and Lieb [25] showed that these entropies for a 
composite system satisfy the triangle 
inequality a f a fs s s s s    . In our model, 

the initial state is prepared in a pure state, so 
the whole atom-field system remains in a pure 
state at any time t >0 and its entropy is always 
zero. However, due to the entanglement of the 
atom and the cavity field at t >0, both the atom 
and the field are generally in mixed states, 
although at certain times the field and the 
atomic subsystems are almost in pure states. 
The entropies of the trapped atom and the 
field, are defined through the corresponding 
reduced density operators by 

( ) ( ) ( ) ( )
ˆ ˆ( ),a f a f a f a fs Tr Ln  

 
(16) 

provided we treat both separately. Now we 
examine numerically the dynamics of the field 
entropy. The numerical results of the evolution 
of the field entropy versus the scaled 
detuning 1  are shown in Fig. 5 with the 
same corresponding data used in Fig. 2. It is 
seen from Fig. 5(a) that the cavity field 
entropy evolves periodically at t =1/2tr. This 
periodic evolution can be attributed to the 
periodicity of the atom-field coupling. In 
addition, the minimum value of the cavity-
field entropy at this time is zero. Comparing 
results with Fig. 4(b) in which the Q-function 
of the field mode bifurcates two blobs having 
the same amplitude but opposite phase, 
expresses that the cavity-field is in the 
coherent superposition of two squeezed states.  

  
Fig. 5 Temporal evolution of the cavity-field 
entropy in the first order of the Lamb-Dicke 
parameter: (a) t= 1/2tr , (b) t= 3/4tr , and (c) t = tr . 

At t =3/4tr and t = tr the minimum value of the 
entropy does not reach zero. Also, increasing 
the   parameter results in not only increasing 
the amplitude of the field entropy but also 
occurring fast oscillations in the course of time 
evolution of the field entropy. Physically, this 
is in agreement with Figs. 3(c) and 3(d) in 
which two blobs mixed together denoting the 
occurrence of decoherence in the system. In 
the system under consideration, both cavity-
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field decay and atomic spontaneous emission 
are the decoherence factors which destroy the 
generation of non-classical state of the field.   

V. CONCLUSION 
In this paper, we investigated the generation of 
nonclassical state for the cavity-field in a 
system of a single trapped atom by controlling 
the Lamb-Dicke parameter. We showed that 
although there is no apparently nonlinear 
characteristic in the Hamiltonian of the system 
of a trapped atom in the cavity, within the first 
order of the Lamb-Dicke approximation, the 
system exhibits an inherent nonlinearity. 
Analyzing the atomic population inversion 
within the first order of the Lamb-Dicke 
approximation indicated that the collapse and 
revival times decrease in comparison with 
those correspond to the zeroth-order of 
approximation. By examining the dynamical 
evolution of the phase space Q-function we 
found that the cavity-field state evolves toward 
a coherent superposition of two squeezed state 
at 1/2tr. Moreover, we showed that the 
quadrature squeezing occurs for short time in 
the very beginning of the interaction. 
Analyzing the entropy of the cavity field 
subsystem revealed that at certain times the 
subsystems are almost in pure states, and they 
are entangled at some other times. The results 
also indicated that the atomic spontaneous 
emission and the cavity-field decay destroy the 
nonclassical properties of the cavity field. 
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