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ABSTRACT— One of the main milestones in the 
study of opto-mechanical system is to increase 
the sensitivity of weak forces measurement up 
to the standard quantum limit. We have studied 
the detection of weak force under a bistable 
condition in red detuned regime. In this case, 
dynamics of the system behaves asymptotically 
similar to stationary state and applying external 
force affects phase and fluctuation of the cavity 
field. Using the signal to noise ratio, we have 
found the sensitivity of the system to external 
force. The system show the maximum sensitivity 
in the region where bistability approaches zero. 
We also studied the destructive effects of 
thermal noise on the sensitivity. Our approach 
is based on the covariance matrix formalism 
which can be solved by first Lyapunov theorem. 
 
KEYWORDS: Bistable region, cavity opto-
mechanics, force measurement, quantum 
Langevin equation, red detuned regime.  

I. INTRODUCTION 
Cavity optomechanical systems play an 
important role in high sensitivity measurement 
like gravitational-wave detection and atomic 
force microscope [1, 2]. One way to detect a 
high sensitivity is to apply a weak force to a 
moveable mirror in an optical cavity and 
measure the phase-shift of the reflected beam. 
The external force exerts a momentum and 
position shift on the mirror, which in turn 
induces a phase shift of the reflected optical 
field in the cavity. Then, one can measure the 
phase sensitivity of the reflected light that 
provides the force measurement [3, 4]. 

The sensitivity in an optical cavity is limited 
by the thermal noise on the mirror, mechanical 
degrees of freedom, and unavoidable quantum 
noise associated with quantum nature of light 
[5]. The phase noise (shot noise) of the 
incident light and the radiation pressure noise 
induce some fluctuations in the position of 
moveable mirror. Combination of these noises 
leads to the standard quantum limit for the 
sensitivity of measurement [6]. 

Analogous fundamental limitations affect 
other similar detection devices, such as nano- 
and micro-electromechanical systems [7]. 
Fermani et al. [1] proposed an optomechanical 
detection scheme involving a single highly 
reflecting mirror, shined by an intense highly 
monochromatic laser pulse. A vibrational 
mode of the mirror induces two sidebands of 
the incident field, the Stokes and anti-Stokes 
sideband. This effect was recently observed in 
a micro-mechanical resonator as a 
consequence of the radiation pressure force 
acting on it. Under appropriate conditions on 
the duration of the laser pulse, the two 
sideband modes show significant two mode 
squeezing, i.e., they are strongly entangled [8]. 

In fact, Fermani et al. [1] considered the 
limited case of a laser pulse duration much 
shorter than mechanical relaxation time and 
neglected all the dynamical effects of damping 
and thermal noise. Here we drop this 
assumption and we take into account the 
effects of the thermal environment acting on 
the mechanical mode, by adopting a quantum 
Langevin equation treatment in a single mode 
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optomechanical cavity [8]. Damping and 
thermal noise have detrimental effects on the 
force detection sensitivity. 

The paper is organized as follows. In Section 
II we describe the system Hamiltonian and 
derive the quantum Langevin equations. Then, 
we derive the linearized equations around the 
steady state values. In Section III, we discuss 
the stability conditions in which correlation 
matrix and bistability parameters are 
quantified. Using these conditions and 
parameters, in Section IV we study the force 
detection sensitivity and finally our conclusion 
is presented in Section V. 

II. THE SYSTEM HAMILTONIAN 
The proposed scheme is shown in Fig. 1, a 
laser beam source, an optical Fabry-Perot 
cavity in which one of the mirror is much 
lighter than the other, and a detection system 
to measure phase variation. In principle, every 
mechanical resonator has a multitude of 
normal modes, and every optical resonator 
likewise has many different modes. The 
incoming monochromatic laser drive will 
select one optical cavity resonance frequency.  

 

Fig. 1: Schematic description of optomechanical 
system to detect an external constant force. The 

cavity mode is driven by the laser at frequency 0 . 

External force changes the phase of the cavity field. 
Using beam splitter, we provide the phase 
measurement for both input and output fields.  

In the case of mechanical motion, all the 
mechanical resonances will appear in the RF 
spectrum [9]. However, one can consider a 
single mechanical mode when a bandpass filter 
in the detection scheme is used [10]. Then, the 
motion of the lighter mirror is described by the 
excitation of one degree of freedom with a 
single resonant frequencies, m . In the 

adiabatic limit, the mirror frequency is much 
smaller than optical cavity resonance 

frequency c

c

L

   ( L  is the effective length 

of Fabry-Perot cavity) and mode-mode 
coupling is negligible. Therefore, we have 
exclusively considered one optical mode 
coupled to one mechanical mode.  

The cavity is driven at a frequency 

0 Δc 0   , in which 0  is the driven laser 

frequency and 0  is cavity detuning. An 

external constant force exerts on 
nanomechanical oscillator or moveable mirror 
that displaces its position. The Hamiltonian of 
the system is given by  
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where q and p ( ,q p i ) are the 

dimensionless position and momentum 
operators of the mirror, respectively, a and  

(

†a
†,a a 1    ) are the annihilation and creation 

operators of the cavity field mode, respectively 
with frequency c  and decay rate , and 

optomechanical coupling 



0 / /c mmG L   , where m is the effective 

mass of the mechanical mode, and L is an 
effective length of the Fabry-Perot cavity. The 
first two terms are free harmonic oscillators, 
and the third term corresponds to 
optomechanical coupling. The next term 
describes the input driving by a laser with 
frequency 0, where E is a function of the 

input laser power as 02E P   . The last 

term show that a dimensionless force exerts on 
the moveable mirror and changes its position 
(q) which in turn varies the phase of the 
optical cavity field. Our goal in this paper is to 
measure this weak force. We take a single 
mode cavity and neglect the scattering of 
photons to other cavity modes [8].  
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The dynamics can be derived by the following 
set of coupled quantum Langevin equations. In 
the interaction picture with respect to 	†

0a a

mq p  (2) 

   m m o mp q p G a a f t t          (3) 

0( ) 2oa i a iG aq E       ina  (4) 

where ( )t  is the random force exerting on 

nanomechanical oscillator, m is the damping 
rate of nanomechanical oscillator. The input 
noise operator ain associates with the 
continuum of modes outside the cavity, having 
the following correlation functions 

†( ) ( ) ( ) ( ) 0in in in ina t a t a t a t 

'

 (5) 

†( ) ( ') ( )in ina t a t t t   (6) 

Furthermore,  t  is the quantum Langevin 

force acting on the mirror, with the following 
function [7]  
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Clearly, ( )t  is not delta-correlated and does 
not describe a Markovian process. At large 

mechanical quality factor ( 1m
m

m



 , 

( )t

) limit

  becomes delta-correlated [8],  
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where   1
exp 1m Bn k T


      and it 

follows a Markovian process (kB is the 
Boltzmann constant and T  is the mirror 
temperature). Each Heisenberg operator can be 
written as c-number steady state plus a 
fluctuation operator with zero mean value as 

sa a   , sq q q   and sp p p  . 

Inserting these expressions into the Langevin 
eqations of Eq. (2) to Eq. (4), they decouple to 
a set of steady state values and a set of time 
dependant quantum Langevin equations for the 
fluctuation operators [8]. The steady state 

values are given by , 0sp  2

0 /s s mq G   , 

/ ( Δ)s E i   , in which s  is the stationary 

intracavity field amplitude and the effective 
cavity detuning (including the radiation 
pressure effect) is given by 

22
0 0Δ Δ /s mG  

†a

  . In the case of large 

amplitude of light, we can neglect the 
nonlinear terms a   and q a   and gets the 
linearized quantum Langevin equations  

mq p  

m m

 (9) 

 ( )mp q p  G X  f t  t    


  (10) 

Δ 2 inX X Y   X     (11) 

ΔY Y X 2 inYG q         (12) 

If we choose the phase reference then s  

would be real. In order to characterize the time 
dependent part of the system we define the 
cavity field quadratures as 

 † / 2X a a    , and 

 † / 2Y a a i    . The correspondent 

Hermitian noise operators are introduced as 

 † /in inX a a   2in  and 

 † /in inY a a i   2in . The quantum 

fluctuations of field and oscillator are now 
coupled by the effective optomechanical 

coupling 
 2 Δ

P
  2

0

2 cG
L




m m
, so that 

the correlation of the field phase and external 
force becomes stronger. External force in Eq. 
(10) affects both position and momentum of 
the moveable mirror.  
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III. STABILITY CONDITIONS  
In the matrix form, quantum Langevin 
equations of motion, Eq. (9) to Eq. (12), can 
be written as  

     u t Au t n t   (13) 

where , ( ) ( ( ), ( ), ( ), ( ))Tu t q t p t X t Y t   

      (0, , 2 , 2 )T
in inn t t X t Y t    and  

0 0 0

0

0 0 Δ

0 Δ

m

m m G
A

G


 




 
  
 
 

 




( )

 (14) 

Equation (13) has the solution  

       
0

0
t

u t M t u dsM t s n s    (15) 

where   exp( )M t  At . If all the eigenvalues 

of matrix A have negative values, the system is 
stable and reaches steady state. The stability 
condition can be derived by applying the well-
known Routh-Hurwitz criterion [11],  
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Gaussian, the steady state for the system is a 

(16) 

 2 2 2
2 0ms        (17) 

 which will be satisfied hereafter. In the red 
detuned regime of operation with respect to 
the cavity ( ), the first Routh-hurwitz 
criterion is always satisfied but the second 
criterion matters. On the other hand, in the 
blue detuned regime ( ), the second 
criterion is always satisfied and just the first 
one matters. 

0 

0 

A. Correlation Matrix of the System 

Since the dynamics is linearized and noise 
terms in Eq. (13) are zero-mean quantum 

two mode Gaussian state that can be 
characterized by its 4×4 correlation matrix 

        2ij i j jV u u u u       [12]. 

 have  
i

Using Eq. (15) in the stable state, we

 (18)      ' Φ 'ij ik jl kl
V ds ds M s M s s s  '

 

 
, 0 0k l

where 

    2 2 2' 2 2 2m mkl
         

is the matrix of stationary noise correlation 

Φ s s

functions. Using the noise operators ( )t  and 

( )ina t , we have   'Φ ' )s s D t     (
kl kl t

  '' ( )s D t tΦ s klkl
   , where 

     , 2 1 , 2 1n n 0,iag 2m bn 1 a aD D     
 and correlation matrix becomes: 

 
0

( )TV dsM s DM s 


  (19) 

which is equivalent to first Lyapunov’s 
theorem [13]  

TAV VA D    (20) 

Equation (20) is a linear equation for  and 
t

B. Bistability 

g we restrict our discussion to 



V
can be straightforwardly solved; bu  the 
general exact expression is too cumbersome 
and will not be reported here.  

In the followin
the red detuned regime where both 1s  and 2s  

conditions are fulfilled. We can use Eq. (17) to 
redefine the dimensionless bistability 
parameter as  


2

2 2
1

m

G
 


 

 
 (21) 

which is a positive number between zero and 
one. The bistability parameter decreases in the 
bistable regime and becomes equal to zero at 
the end of each stable branch [11]. 
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In the bistable regime, the fluctuation around 
the steady state diverge as one approaches the 
end of each stable branch and when bistability 
goes to zero, the system dynamics can 
suddenly transits to another branch. So in this 
case, varying the system parameters leads to 
drastic changes in the system.  

We consider an optical cavity with length 
 mm, input power  W, and 

finesse , driven by a laser with 

1L 

810

44 10inP  
43.8 10 

   nm. The nanomechanical oscillator 
frequency and damping rate are 10 MHz and 
100 Hz and its mass is in the range of 5-30 ng 
[8,11].  

IV. FORCE DETECTION SENSITIVITY 
We now consider the real time detection of the 
constant force f applied to the mirror and 
determine the sesnsitivity of the 
optomechanical system by the signal to noise 
ratio. In this optomechanical devices based on 
radiation pressure effects, we perform phase 
sensitive measurement on the reflected beam 
because the applied force shifts the position of 
nanonanomechanical oscillator or probe 
leading to a phase shift of the optical field 
[14]. 

In red detuned and bistability regime, as the 
time passes the system reaches to the steady 
state. Using Eq. (15), the mean values of the 
parameter are given as  

     ' '

0

0 At
i i j

ij
u M u e n t d


    '( ) t  (22) 

where in steady state, we have  and 

the mean value of the noise term (

  0M  

(in t)  ) 

equals zero then we have . But the 

mean value of squared term or fluctuation is 
not equal to zero. The fluctuation of the cavity 
field phase of the measurement is given as 
follow that is evidently nonzero  

0i u
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In Eq. (23), the first term corresponds to the 
fluctuation of amplitude and phase of the 
optical field and the second term corresponds 
to Brownian motion of the moveable mirror. 
On the other hand, the fluctuation is V44 in 
covariance matrix which is calculated in 
previous section. The mean number of 
phonons (nm) and also the fluctuation depends 
on temperature of nanomechanical bath.  

In presence of external force, the mean value 
of optical phase or signal has a positive value. 
So the mean value of phase or signal of the 
system is  

   '2 '

42
0

At
mY e f t


   '  (24) dt

It means that applied force contributes in 
phase of the system [12]. In order to measure a 
constant force, the signal must be larger than 

noise of the system 
2

1
YS

N Y

 
    
 

. Then 

we have  

  ' '

2 42
0

' 1AtmSNR f t e dt
Y

 
    (25) 

In the limit of minimum signal that the signal 
of system equals the fluctuation, we can resort 
Eq. (25) to find the sensitivity or the minimum 
measured force as 

 '

2

min
'

0 42

At
m

Y
f

e d
 


 t

  (26) 

The sensitivity depends on T, G, c ,  , m , 

m, and m. We first consider the behavior of 
sensitivity versus the mass of nanomechanical 
oscillator. We have made careful analysis in a 
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wide parameter range and found a parameter 
region very close to that of performed 
experimentally and considered theoretically 
[8]. 

 
Fig. 2: The sensitivity as a function of the mass of 
moveable mirror in the red detuned regime. The 
cavity damping rate, temperature, and effective 
detuning are 0.4 m , 0.4K, and m  . 

Figure 2 shows the sensitivity versus the mass 
of nanomechanical oscillator m at temperature 
0.4 K. The sensitivity constantly decreases 
with the increase of mass and temperatures of 
the system.  

 
Fig. 3: The sensitivity as a function of the damping 
rate of optical cavity in the red detuned regime. The 
mass, temperature and cavity damping scale are 5 
nm, 0.4K and 0.4 m .  

Figure 3 shows sensitivity versus the damping 
rate of optical cavity  at temperature 0.4 K. 
In contrast to the above case, the sensitivity 
increases with increasing the damping rate of 
optical cavity and approaches zero at large 
values of . The time that optical photons 
spend in optical cavity is proportional to 




1  . 

This time also corresponds to distance traveled 
by photons that both of them increase the 

sensitivity. Also, in this case the increase of 
temperature affects the sensitivity. 

The sensitivity depends on the effective cavity 
detuning and temperature of the mechanical 
bath. The bistability only depends on effective 
cavity detuning. Figure 4 shows the sensitivity 
and bistability versus effective cavity detuning 
at different temperatures 0.4 K, 4 K, and 40 K.  

 
Fig. 4: The sensitivity as a function of effective 
detuning in the red detuned regime at different 
temperatures and the bistability parameter is shown 
which is independent of temperature. The cavity 

detuning scale and mass are m   and 5 nm.  

The region in which bistability parameter 
approaches zero is called bistability region. 
The minimum measured force or maximum 
sensitivity coincides with the minimum 
bistability parameter. As the temperature of 
the system increases, thermal noise slightly 
decreases the sensitivity at the bistability 
region ( 0  ), but its effects are more 
noticeable at far regions from bistability. 
Therefore, in an experimental setup, one 
should tune the system in bistability and red 
detuned region in order to measure the highest 
sensitivity.  

In the case of time dependent force, we can 
apply periodic forces  0( ) sin( )mf t f t  on 

nanomechanical oscillator. Using Eq. (26), the 
system is able to measure the amplitude of 
periodic forces which results in similar 
behavior in case of constant force [15]. When 
frequency of external force is equal to the 
frequency of nanomechanical oscillator 
( f m  ), the maximum sensitivity is 
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obtained that is equal to the case of constant 
force in Fig. 4.  

V. CONCLUSION 
We have proposed a red detuned bistable 
optomechanical system, that is able to measure 
a constant external force in a linearized 
regime. The sensitivity decreases when the 
mass of nanonanomechanical oscillator 
increases and also it increases when the cavity 
damping increases. If we consider the effects 
of both mass and damping rate, the sensitivity 
at first increases and then decreases and shows 
the maximum value at the region that 
bistability parameter approaches zero. When 
the temperature increases, the destruction 
effects of thermal noise on the sensitivity are 
negligible in the region that bistability 
parameter approaches to zero ( 0  ). But, 
when the bistability parameter increases 
( 0  ), the sensitivity of the system 
decreases. Therefore, in order to measure an 
external force, one can tune the system at the 
state in which bistability parameter approaches 
to zero. 
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