
International Journal of Optics and Photonics (IJOP) Vol. 7, No. 2, Summer-Fall, 2013 

85 

Unique Solution of Short Pulse Propagation in 
Nonlinear Fiber Bragg Grating 

 
Elham Yousefia and Mohsen Hatamib,* 

 
aAtomic and Molecular Group, Faculty of Physics, Yazd University, Yazd, Iran 

bDepartment of Physics, Faculty of Sciences, Shiraz University of Technology, Shiraz, Iran 

 

*Corresponding Author Email: hatami@sutech.ac.ir 
 
 

 
ABSTRACT—In this study, a new numerical 
method is introduced to obtain the exact shape 
of output pulse in the chalcogenide fiber Bragg 
grating (FBG). A Gaussian pulse shape with 173 
ps width is used as an input pulse for lunching 
to a 6.6 mm nonlinear FBG. Because of bistable 
and hysteresis nature of nonlinear FBG the time 
sequence of each portion of pulse is affected the 
shape of output pulse. So we divide the pulse to 
leading and trailing portion in time. By using 
bistability curve and Fourier transformation, 
the exact shape of output pulse is simulated. In 
comparison of non-unique solution for output 
pulse in the previous papers, the results of this 
study have an optional merit. 
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I. INTRODUCTION 
Fiber Bragg grating plays a crucial role in 
future of all optical communication systems. It 
has many applications in linear regime like: 
division wavelength multiplexer (DWM), 
optical filters, optical compensations, optical 
sensors [1, 2], and also in nonlinear regime 
such as optical switching, optical bistability 
and all optical transistors [3, 4]. 

Many works have been done for obtaining the 
exact shape of output pulse in nonlinear FBGs 
by using inverse Fourier transformation 
method [5, 6]. But their results show that the 
output pulse is not unique for a given input 
pulse. They consider two states (On-state and 
Off-state) for reaching the output while the 
relation between them is ignored in their 
simulation process [5-7]. In this paper our aim 

is to introduce a new and simple method for 
overcoming such problems by suitable 
splitting the input pulse and using inverse 
Fourier transformation. 

II. THEORY 
The refractive index along the length of FBG, 
which schematically is shown in Fig. 1, can be 
written as [6]: 
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where E is the electric field in FBG, Λ is the 
grating period, n0 ,n1 and n2 denote the linear 
refractive index, refractive index modulation 
amplitude and third order nonlinear refractive 
index coefficient, respectively. 

 

Fig. 1 The schematic of the FBG with length L and 
period of Λ. The forward and backward waves are 
shown. 

The electric field in the FBG can be described 
as a combination of the forward and backward 
waves: 
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where, ω0 is the carrier frequency, Af and Ab 
represent the slowly varying amplitude of 
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forward and backward waves respectively, and 
F(x, y) is the transverse variations for the two 
counter propagating waves [8]. 

Substituting Eqs. (1) and (2) into the 
Maxwell’s wave equations and using slowly 
varying amplitude approximation, the 
nonlinear coupled mode equations for both 
forward and backward wave amplitudes in 
constant frequency are obtained as follows: 
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where α is FBG loss that is neglected, δ, κ and 
γ account for the detuning from the Bragg 
wavelength, coupling coefficient and 
nonlinearity coefficient, respectively. 

III. NUMERICAL CALCULATIONS AND 

RESULTS 
The numerical solution of nonlinear coupled 
mode equations is derived using predictor 
corrector and Runge-Kutta methods. We did 
this calculation from the ending of the FBG to 
its beginning. Therefore, this method requires 
initial values in z=L instead of boundary 
conditions as used in [6]: 

( ) , ( ) .f fL bA z L A A z L    0  (5) 

The typical data which is used in this paper are 
λB=1550 nm, λ=1550.015nm, L=0.0066 m, 

n0=2.54, n1=1.5×10-4, n2=220 n2silicon [9], 

where n2silicon=0.273×10-19m2/W [10]. 

For simulation we take a Gaussian pulse as 
input which implies: 

  exp ,A t t
2

02  (6) 

where, A is the peak of pulse,t0is the half width 
of Gaussian pulse which is taken equal to 173 
ps in this paper. The intensity of the input is 
sketched in Fig. 2.  

 
Fig. 2. Input intensity vs. time. 

 

Fig. 3. Bistability diagrams for 10 frequency values. 

Considering the bistability curve and 
hysterical behavior of nonlinear FBGs, each 
point of the output pulse depends on when and 
where the corresponding point of the input 
pulse was. In Fig. 3, ten bistability diagrams 
related to ten typical frequencies are plotted. 

If the peak intensity of input pulse is smaller 
than the switching threshold intensity, the 
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output pulse can be calculated easily because 
of linear and non-hysteresis behavior of FBG 
in mentioned assumption. So, in this paper we 
assume that the peak input intensity is larger 
than the switching threshold intensity. 

For taking into account these effects, we 
divided the Gaussian input pulse into two parts 
in time domain. One lies in negative side of 
time axis and the other lies in the positive side 
which are shown in Fig. 4-a and4-b 
respectively. The pulse portion which lies in 

the negative time is called leading part, and 
positive time called trailing part. First the 
leading part enters to the fiber while the 
trailing portion enters at latter time in the 
nonlinear FBG. 

We calculate the Fourier transform (FT) of the 
leading and trailing parts of input pulse which 
are shown in Fig. 4-c and 4-d respectively. 
Because of the linearity of FT transformation, 
the FT of sum of two pulses is equal to sum of 
the FT of them. 

  
(a) (b) 

  
(c) (d) 

Fig. 4. (a) Leading part of input pulse (part 1), (b) trailing part of input pulse (part 2) (c) FT of leading part, (d) FT 
of trailing part. 

 

To investigate the propagation of pulse in 
nonlinear FBG first we simulate leading part 
by using path1 of bistable diagram (Fig. 5-a), 
then we simulate trailing part by using path 2 

of bistable diagram [11] (Fig. 5-b). We use FT 
of leading part of pulse (Fig. 4-c) and divided 
it to the same frequency interval which is 
obtained from Fig 3. Path 1 of each bistable 



E. Yousefi and M. Hatami Unique Solution of Short Pulse Propagation … 

88 

curve corresponding to each sample of 
frequency is used to obtain output intensity in 
frequency domain. In this stage the output 
intensity of leading portion of pulse is 
obtained which shown in Fig 6-a. A 
corresponding procedure is repeated for 
trailing part of the pulse. The FT of trailing of 

the pulse (Fig. 4-d) is sampled in frequency 
domain corresponding to frequency divisions 
in Fig 3. By using path 2 of each bistable 
curve the corresponding output intensity is 
obtained in frequency domain. In the second 
stage the trailing portion of output pulse is 
obtained in frequency domain (Fig. 6-b).  

  
(a) (b) 

  
(c) (d) 

Fig. 5. (a) path 1 for negative time which shows in a typical bistability diagram, (b) path 2 for positive time which 
shows in a typical bistability diagram, (c) the output pulse for part 1 trajectory evolution, (d) the output pulse for 
part 2 trajectory evolution. 

 

Finally the output pulse in frequency domain 
is obtained by combination of two leading and 
trailing part of pulse in frequency domain at 
output which is shown in Fig. 6-c. The output 
pulse in time domain is obtained by inverse 

Fourier transform (IFT) of output pulse in 
frequency domain. Fig. 6-c show the unique 
solution of output pulse in time domain. 

Finally, we obtain the unique solution for the 
output intensity in time domain by a simple 
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method. This method is very exact and simple 
comparison of last work [7] which overcome 
the problems that seen in previous papers [5, 
6]. 

 

  
(a) (b) 

 
(c) 

Fig. 6. (a) Output pulse in frequency domain, (b) output pulse in time domain and (c) comparison between input 
and output pulses. 

 

IV. CONCLUSION 
In this study, we have introduced a new and 
simple numerical method for obtaining the 
unique shape of output pulse nonlinear bistable 
fiber Bragg grating. Initially the input pulse is 
divided in to two parts in time domain. The 
Fourier transformation of each part  is taken 
and the frequency response of each part is 
obtained in the output by using bistability 
frequency response of FBG. Finally the 
inverse Fourier transform is used to obtain the 
output pulse in time domain. This method can 
be used for pulse propagation in bistable 
systems. We have used this method for 

propagation of a Gaussian pulse through the 
nonlinear bistable chalcogenide FBG. 
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