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ABSTRACT— In this paper, the evaluation of 
time profile of a femtosecond pulse laser 
propagated through biological tissues is studied. 
The majority of the biological tissues with a 
high scattering anisotropy must be considered 
as turbid media, that their optical responses are 
complicated. To study the propagation of ultra-
short pulse in turbid media, the diffuse equation 
is used. In this study, the analytical and 
numerical solution for diffuse equation is 
investigated. The numerical method is based on 
Boundary Integral method (BIM), and also, the 
time evaluation of propagating pulse is studied.  
 
KEYWORDS: femtosecond pulse, scattering, 
diffuse equation, boundary integral method, 
biological tissue 

I. INTRODUCTION 
IN recent years, short pulse lasers are widely 
used in area of lasers in medicine [1-6]. 
Recently, ultra-short laser is applied for optical 
imaging [7-15]. That is because; the temporal 
distribution of reflected signal is broadened 
due to multiple scattering of photons into 
tissues [2, 12]. Thus, the temporal distribution 
of the reflectance can be used to study the 
variation of optical properties of the normal or 
malignant breast tissue, because the optical 
properties of normal breast tissues vary in 
malignant progress [13]. 

The propagation of ultra-short pulse in an 
optically turbid medium is described by the 
radiative transfer equation (RTE) [16]. Photon 
transport in biological tissue can be 
equivalently modeled analytically by RTE or 

numerically by Monte Carlo method (MC). 
However, the RTE is difficult to solve without 
introducing approximations. A common 
approximation summarized here is the 
diffusion approximation. Overall, solutions to 
the diffuse equation for photon transport are 
more computationally efficient, but less 
accurate than Monte Carlo simulations There 
is not any analytical solution for RTE in the 
general form. For this reason, the simplified 
forms of the RTE are investigated which 
obtained in different approximations such as 
small-angle RTE and diffuse equation [17]. In 
the RTE, six different independent variables 
define the radiance at any spatial and temporal 
point ( ,, yx and z  from r , polar angle  and 
azimuthal angle   from direction of ŝ  and 
time t ). By making appropriate assumptions 
about the behavior of photons in a scattering 
medium, the number of independent variables 
can be reduced. These assumptions lead to the 
diffuse equation for photon transport. Two 
assumptions permit the application of 
diffusion theory to the RTE: first, Relative to 
scattering events, there are very few 
absorption events. Likewise, after numerous 
scattering events, few absorption events will 
occur and the radiance will become nearly 
isotropic. This assumption is sometimes called 
directional broadening. Second, in a primarily 
scattering medium, the time for substantial 
current density change is much longer than the 
time to traverse one transport mean free path. 
Thus, over one transport mean free path, the 
fractional change in current density is much 
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less than unity. This property is sometimes 
called temporal broadening. It should be noted 
that both of these assumptions require a high 
scattering medium. Therefore, the diffuse 
equation is based on multiple scattering. 

In small-angle RTE approximation, one can 
assume that the deviation angle   of scattered 
photon from the beam axis is small, so 
that 1cos  . This assuming is accepted for the 
majority of biological tissues. That is because, 
these tissues have large anisotropy 
factor  9.0cos  . By this approximation, the 

RTE can be simplified and analytically solved.  

The Diffuse Equation is used to study of 
photon propagation into turbid media, but the 
solution of this equation is difficult, so it 
should be solved by numerical methods like 
Monte Carlo method (MC) and Finite 
Difference Time Domain method (FDTD), 
which are time-consuming [18-23]. FDTD is a 
numerical method for modeling computational 
electrodynamics (finding approximate 
solutions to the associated system of 
differential equations). The FDTD method 
belongs in the general class of mesh-based 
differential time-domain numerical modeling 
methods (finite difference methods). The time-
dependent RTE or diffuse equation is 
discretized using central difference 
approximations to the space and time partial 
derivatives. The resulting finite-difference 
equations are solved in either software or 
hardware in a step manner: the laser fluence in 
a volume of sample is solved at a given instant 
in time; and the process is repeated over and 
over again until the desired transient or steady-
state behavior is fully evolved. 

MC and FDTD are time consuming and for 
special application like image reconstruction 
are not suitable, so a new fast method must be 
used. 

Boundary Integral Method (BIM) can be also 
used to solve diffusion equation. As this 
method requires surface tessellation, therefore, 
computation time is reduced and accuracy of 
results increases [24]. Diffusion equation in 
frequency domain has also numerically been 
solved by BEM [24-27], but that algorithm 

could only be applied to study propagation of 
continuum waves in tissues. In this report, we 
simulate pulse propagation into biological 
tissues. 

As it was previously mentioned, recently, the 
ultra-short laser is applied for optical imaging. 
Also, in the optical imagining, to prevent 
photoablation or other effects that affect on the 
breast tissue, the value of laser fluence must be 
low. So, in this paper, a necessitous way to 
data processing for ultra-short optical imaging 
is introduced. The method of study of pulse 
propagation in breast tissue by using analytical 
method and BIM is presented. In optical 
imaging and in the range of near infrared 
spectrum, breast tissue can be assumed as 
homogeneous phantom defined by specific 
optical properties [3, 5]. Hence, the 
propagation of ultra-short pulse inside 
homogeneous breast tissue is studied. First, the 
analytical solution of RTE by small-angle 
approximation is studied and then, the diffused 
equation is studied by BIM. I obtain 
appropriate green function to convert diffusion 
equation to integral form by using the green’s 
second theorem. Next, the surface integral is 
discretized by using Boundary Element 
Method (BEM) and the resulting integral is 
numerically solved [27]. Using this technique, 
we have calculated intensity and temporal 
evolution of diffusely reflected pulse from 
tissue. Furthermore, effects of reduced 
scattering coefficient on time broadening of 
diffusely reflected pulse are also studied. 

II. REVIEW OF THEORY  

A. Analytical Method: 
The RTE is written in the form [16]: 

   
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where  ,p s s  is the phase function of a 

photon to be scattered from direction s  into 
s , ds  is an infinitesimal path length, and d  
is the elementary solid angle about the 
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direction s .  , ,J tr s  is called radiance, and 

a  and   are absorption and scattering 
coefficients, respectively. The velocity of light 
is shown by c . 

By applying Fourier transform on Eq. 1: 
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where  
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2
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


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 r s r s  

is the spectral radiance. The Eq. 2 is similar to 
the stationary RTE in a medium with 
absorption coefficient ciaa ~ . If assume 

that ˆ
tz r k r , where tr  is transverse vector. 

By integration on transverse vector: 

   , , , ,J z J d 




  ts r s r  (3) 

describes the angular diffused light in direction 
of z axis, where it can be assumed as 
following: 
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Here  , ,bJ z s  is the unscattered intensity 

and  , ,dJ z s  is light multiply scattered by 

small angle.  , ,iJ z s is the intensity of ith 

order of scattering. The ith-order of scattering 
can be assumed as following: 
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where tn  is unit vector along tr , in small angle 

scattering 1t n , so 2/1 2
tz nn  .  

The  , ,dJ z s  is satisfied in RTE: 
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where 12  g . The spatial intensity of the 
source is can be represented by a Gaussian 
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 that P  and s  are its 

power and angular distribution of source, 
respectively. The detected power detP  of 
multiply scattered radiation can be described 
in the following integral: 

  
z

zdazzzPP
0

det )exp(  (7) 

It can be shown that the profile of diffused 
pulse is given by: 
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where W is initial power of laser pulse, 
ciaat  ~ . By substitution (9) into (8) 

and by applying Fourier transform, the 
temporal profile of pulse is achieved. 

B. Numerical method 
The RTE can be simplified by diffusion 
approximation. In this approximation, the 
reduced scattering coefficient must be greater 
than absorption coefficient, namely 

 ga  1 . Diffused photon into biological 
tissue   with boundary s , respectively, given 
by [25]: 
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and 

   ,
, 2 0           R s

t
t C D

n





  


r
r r  (10) 

where  , t r  and  ,S tr  are, respectively, 

fluence and the isotropic source term at 
position r  and at moment of t. The velocity of 
light is shown by c . The parameter 

   aD 31  is diffusion coefficient, where 

a  and  g 1  are absorption and 
reduced scattering coefficients, respectively. 
  and g are also scattering coefficient and 
anisotropic factor, respectively. In Eq. 10, 

   RRCR  11  where R  is Fresnel 

reflection coefficient.  

To solve Eq. 9 with Robin boundary condition 
(Eq. 10), we can use Green’s function [24]. 
The Green’s function of equation (9) in 
domain  can be considered as solutions of the 
following equation 
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By applying Laplace transform on t in 
Equation (12) and rearranging the resulting 
equation, we obtain: 
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D
a
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applying Fourier transform on r  in equation 
(12) and doing some mathematics results to: 
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where g is Fourier transform of G~ . 

Inverse Fourier and Laplace transforms on the 
green function stated in equation (13) gives the 
green function as [23]: 
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where  ttH   is Heaviside function. 

The intensity of diffused short pulse can be 
calculated by green function stated in relation 
(14). Boundary Element Method (BEM) can 
be used to solve equation (16). In this method 
the boundary of the sample is first discretized 
to elements. Then, observation point r is 
located on the surface of tissue and an 
equation containing fluence at that point is 
achieved. Locating observation point on 
different nodes, a system of equations is 
obtained which gives the fluence at those 
points. Finally, one can solve that set of 
equations and calculate the fluence at any 
arbitrary point inside and outside the sample 
[27]. 

III. RESULTS 
To verify the numerical method, we use BIM 
and finite difference method (FDTD) method 
to study behaviour of reflected pulse. The 
sample is a semi-infinite slab with 

-1mm 02.0a , -1mm 15  and 0.9g  which 
illuminated by a Gaussian laser pulse with 
duration of 10 pS, and the reflectance is 
calculated at distance of 1.014 mm from 
illuminated point by BIM and FDTD method. 
The obtained results by FDTD show that by 
increasing of mesh resolution, they approached 
to the results obtained by BIM. For example, 
the peak reflectance at distance of 1.014 mm is 
achieved 2mmmW10.2  and 2mmmW25.2  by 
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BIM and FDTD method, respectively, whereas 
the number of spatial and temporal nodes for 
BIM and FDTD is 3555  and 30003000  , 
respectively. While the computational time in 
FDTD is more than four times longer than 
BIM. So, it can be seen that BIM can be used 
to simulate pulse propagation into turbid 
media. For comparison of BIM with Monte 
Carlo method, the mean distance traversed by 
photons before exiting the tissues, ct , is 

calculated as 80.6 mm and 81.6 mm by Monte 
Carlo method and BIM, respectively, while the 
computational time for Monte Carlo method is 
between 4 to 10 hours [28], but BIM takes 
some minutes. In addition, the numerical 
results are compared with experimental results 
reported in [29]. Calba and his colleagues 
measured the optical depth of ultra-short pulse 
with duration of 100 fs inside a biological 
phantom as 17.72, while the value of optical 
depth is calculated as 18.42 by BIM method. 

 
Fig 1. Temporal evolution of reflectance of a pulse 
originating from a Gaussian source from semi- 
infinite slab of tissue, Solid line: analytical result. 
Dashed line: numerical result obtained by using 
BEM. 

After this verification, the accuracy of 
theoretical method has been investigated. The 
temporal shape of a Gaussian pulse with 
duration of 100 fs is calculated by theoretical 
method and BIM (Fig. 1). The reduced 
scattering coefficient,   , and reduced albedo 

    a  of sample is 0.25 mm-1 and 0.71, 
respectively. The presented results in Fig. 1 
that obtained by theoretical method and BIM 
have similar trend.  

Influence of scattering coefficient on reflected 
pulse is presented in Fig. 2. Two different 
value of scattering coefficient are used in 
theoretical method and BIM. The reduced 
albedo values are 0.71 and 0.83. The results 
show that theoretical method can simulate the 
reflected pulse similar BIM.  

 
Fig. 2. Temporal evolution of reflectance calculated 
by using BEM (dash line) and Theoretical method 
with different value of scattering coefficient (other 
lines). 

 
Fig 3. Effect of scattering coefficient on reflected 
pulse. 

The temporal shapes of reflected pulse for 
lager value of scattering coefficient are shown 
in Fig. 3. This graph depicts anomalous style 
for the peak power of reflected pulse, because 
we presented in [27] that the peak value of the 
reflected pulse increases for lager scattering 
coefficient. That is because by increasing the 
scattering coefficient, more photons are 
scattered from the illumination direction, and 
consequently, the intensity of reflected pulse 
increases. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. The variation of temporal shape of reflected 
pulse for different scattering coefficient. a) 30  
mm-1 b) 40  mm-1 c) 45  mm-1. Solid line 
is obtained by BIM simulation and dashed line is 
results obtained by analytic method. One can see 
that the broadening of simulated pulse is larger than 
the analytic calculation. Also, by increasing of 
scattering coefficient, this discrepancy between 
simulation and analytical method grows. 

As mentioned in review of analytical method, 
the scattering angle must be small, so for 
larger scattering coefficient or small 

anisotropic factor, this method must be 
inspected. To study this point, the variation of 
temporal profile of reflected pulse is calculated 
by theoretical for large value of scattering 
coefficient, and results have been shown in 
Fig. 4. The calculated pulse for scattering 
coefficients of 30, 40 and 50 mm-1 by 
analytical method are compared with those 
results obtained by BIM.  

In these results, the multiple scattering is 
considered, that is because, the diffuse 
equation is based on multiple scattering. One 
can see that the simulated results obtained by 
BIM differ from the analytical results. That is 
because for large value of scattering 
coefficient, the reduced scattering coefficient 
increases, therefore the diffuse regime governs 
photons and the scattering angle raises so, the 
bases of analytical method has been destroyed. 
The comparison with the BIM simulation 
demonstrates that the presented analytical 
method can be used in the case of low-order 
scattering  10   so, this model can only 
describes small-order scattering (low 
scattering coefficient and large anisotropic 
factor), because a smaller anisotropic factor 
results in greater scattering angles of photons, 
which is manifested in formation of a slowly 
decaying trailing edge of pulse caused by long 
delay times of scattered photons [29]. Figs 3-4 
show the proposed analytical method can be 
applied for tissues with small- order scattering 
like bladder, brain, kidney and lung. But, the 
proposed BIM simulation is designed for 
diffuse regime and can be applied for case of 
large scattering coefficient. 

IV. CONCLUSION 
As mentioned in introduction, provide a 
computational approach to ultra-short optical 
imaging of breast tissue is the important 
objective of this study. The optical imaging 
needs safe and non-ionizing radiation, so the 
fluence of applied laser must be low. In this 
study, two different formalisms based on RTE 
for pulse propagation in biological tissues have 
been described. First, RTE by small-order 
scattering was analytically solved; this method 
is easy to calculation and can be applied for 
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case of low scattering. Then, by this method 
the variation of temporal shape of short laser 
pulse in biological tissues has been studied. 
BIM is applied to solve diffuse equation and 
the accuracy of this method was compared 
with Monte Carlo and FDTD methods. 

Results show that for case of low scattering 
coefficient, there is no significant difference 
between these methods. So for this situation, it 
prefers to apply analytical method, because 
this method is faster than BIM and also its 
algorithm is simpler. The analytical method 
can be used for mid-IR range, because almost 
in mid-IR, the value of scattering coefficient of 
biological sample is small or for case of lung, 
brain, kidney and bladder in VIS and NIR. But 
for large value of scattering coefficient, BIM 
must be used, for example for the most 
biological tissue in VIS and NIR, BIM is faster 
than FDTD and Monte Carlo method.  
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