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ABSTRACT— In this paper, the optical 
properties of one dimensional fractal structures 
are investigated. We consider six typical fractal 
photonic structures: the symmetric dual cantor-
like fractal structure, the asymmetric dual 
cantor-like fractal structure, the single cantor-
like fractal structure, the symmetric dual 
golden-section fractal structure, the asymmetric 
dual golden-section fractal structure and the 
single golden-section fractal structure. By using 
the transfer matrix method the transmission 
spectra of these structures are simulated. The 
calculation results shows that the transmission 
spectrum of the symmetric dual cantor-like 
fractal structure is self-similar and the peak 
numbers in the transmission spectra of the 
SDGSFS also follow the principals of special 
fractal structures. It is also shown that in the 
symmetric dual golden-section fractal structure 
the localization of modes which appears within 
the stop band increases and getting closer to the 
middle of the gap by increasing the number of 
string. 
 
KEYWORDS: Cantor like fractals, Golden 
section fractals, Transmission, Transfer 
matrix. 

I. INTRODUCTION 
Problem of wave propagation in deterministic 
non-periodic inhomogeneous media such as 
quasi-crystals and fractal structures has 
attracted the attentions of researchers during 
the last decade [1-4]. This is due to the fact 
that many physical phenomena, natural 
structures and statistical processes can be 
analyzed and described by using a fractal 
approach [5-9]. From a mathematical point of 
view, the concept of fractal is associated with 
a geometrical object which: (1) is self-similar 

(i.e., the object is exactly or approximately 
similar to a part of itself) and (2) has a 
fractional (or non-integer) dimension. Self-
similar structures are obtained by performing a 
basic operation, called generator, on a given 
geometrical object called initiator. By 
repeating the process on multiple levels, in 
each one of them an object composed of sub-
units of itself is created that resembles the 
structure of the whole object. Mathematically, 
this property should hold on all (infinite) 
scales. However, in the real world, there are 
necessarily lower and upper bounds over 
which such self-similar behavior applies. 
Moreover, as a consequence of fractals 
property, these structures exhibit a certain 
number of transmission peaks inside the 
frequency band gap. These systems have been 
analyzed using a transmission lines method. In 
this paper we consider six different fractal 
structures and analyze the properties of these 
fractal structures. Specially, we focus on the 
symmetric dual cantor-like fractal structure 
(SDCLFS), the asymmetric dual cantor-like 
fractal structure (ADCLFS), the single cantor-
like fractal structure (SCLFS), the symmetric 
dual golden-section fractal structure 
(SDGSFS), the asymmetric dual golden-
section fractal structure (ADGSFS) and the 
single golden-section fractal structure 
(SGSFS). 

II. THE THEORETICAL MODEL 

A. Performance of 1D Cantor-like Fractal 
Structures 
The ID Cantor like fractal structure is obtained 
by dividing an initial string and repeating this 
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procedure to the last string (removing the 
center segment from three equivalent 
segments). This kind of fractal structures are 
classical fractals [14-16].  

 
Fig. 1. Structure of the SDCLFS. 

From the mathematical point of view, the 
fractal structure is started by deleting the open 
middle third ]3/2,3/1[  from the interval ]1,0[ , 
leaving two line segments: ]1,3/2[]3/1,0[  . 
Next, the open middle third of each of these 
remaining segments is deleted, leaving four 
line segments: 

]1,9/8[]9/7,3/2[]3/1,9/2[]9/1,0[  . This 
process is continued ad infinitum, where the 
nth set: 

1 12

3 3 3
n n

n

C C
C     

 
  (1) 

Photonic fractals can resonate strongly 
electromagnetic waves with specific 
wavelength and use these waves in the self-
similar structures of metallic or dielectric 
media. Such resonances have been observed in 
one-dimensional cantor fractals [17, 18], 
indeed the resonance can occur at different 
local levels of the self-similar structures at 
different frequencies. 

Based on the Cantor fractal, we change the 
Cantor structure from BAB to other kinds of 
sets and create the cantor-like fractal structure 
(CLFS). The CLFS has two basic parameters: 
generator G and string S. Layer B is chosen as 
the seed layer, which is replaced by generator 
G when string S increases. By setting 
generator G=BAAB we can obtain the 
SDCLFS, which is shown in Fig. 1 with a 
different string S. While, by setting generator 
G=BABA, we can create ADCLFS, again 
based on two parameters which mentioned 
above (Fig. 2). When S=1, the SDCLFS 
consists of 4 parts B,A,A,B and also, ADCLFS 
consists of 4 parts B,A,B,A but the formation 
is different. In the first string, each part has 
256 but when string (S) increases to 2, each B 
part splits to 4 parts filled with B,A,A,B (or 
B,A,B,A) respectively. Each new part has 64 
layers. As this process goes on, when the 
string is S, the number of B parts is 2S, and 
each B part has a (1/4)S ratio of total layers. As 
we known, the self-similarity dimension of a 
fractal is defined as: 

)log(

)log(

r

N
D   (2) 

 
Fig. 2. Structure of the ADCLFS. 

So the self-similarity of this kind of fractals 
can be calculated as  
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Fig. 3. Structure of the SCLFS. 

5.0)4log(/)2log()log(/)log(  rND . 
By considering the generator as G=BA, one 
can obtain SCLFS as shown in Fig. 3. 

B.  Performance of Golden-Section Fractal 
Structures 
In mathematics and the arts, two quantities are 
in the golden ratio )(  if the ratio of the sum 
of the quantities to the larger quantity is equal 
to the ratio of the larger quantity to the smaller 
one. 




b

a

a

ba
 (3) 

The researches show that the fractal 
dimensions in the nature always arrange from 
1.6 to 1.7, which reminds us the golden 
section. For example, the fractal dimension of 
the golden spiral is about 1.619327, which is 
reflected in a seashell spiral, the tail of the sea 
horse, the leaves of plants, and so on. Also, 
many bones of humans are golden cut by a 
joint. Therefore, the golden section fractal is 
the result of biological evolution and natural 
selection [19, 20]. 

Studies show that the golden section exists not 
only in the biological world but also in other 
areas of nature such as quasi-crystals, 

polymers, distances of planets, vortex waves, 
and so on. Thus, the golden section fractal is a 
most important phenomenon in nature. 

 
Fig. 4. Structure of the SDGSFS. 

 
Fig. 5. Structure of the ADGSFS. 

So it is interesting to investigate the optical 
properties of the 1D golden section fractal 
structures. We consider the SDGSFS and 
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ADGSFS which are shown in Fig. 4 and 
Fig. 5. 

In the first string of the SDGSFS, the total 
number of golden layers is assigned to two 
parts, which are layers A and B, respectively. 
The number of layers in A is 618, and the 
number of layers in B is 382. In the second 
string of the SDGSFS structure, each part 
rearrange with A and B layers with regarding 
the golden ratio of the layer numbers. This 
process is continued ad infinitum. Then, we 
can get the nth string of the GSFS. As well as 
SDGSFS we considered the ADGSFS by 
attending to the golden ratio of layers number. 
To clarify the problem we also investigate the 
optical properties of the SGSFS (see Fig. 6). 

 
Fig. 6. Structure of the SGSFS. 

C. Basic Equations 
As shown above, the layers arrangement of the 
1D fractal structures considered in this paper 
are in the following forms: 

.
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for the SDCLFS (see Fig. 1), 
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for the ADCLFS (see Fig. 2), 
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for the SDGSFS ( see Fig. 4) and 
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for the ADGSFS (see Fig. 5). Here, A and B 
show the alternate dielectric layers, 
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respectively. ,...)2,1( iSi  represents the 

different string in the structures. In our study, 
the central wavelength is assumed to be 

nm15500   and the frequency can be 

obtained as 00 /2  c , where c is the 

vacuum speed of light. The individual layers 
of the structures are considered as quarter-
wave layers 4/0 BBAA dndn  for which 

the quasi-periodicity is expected to be more 
effective. The refractive indices of the layers 
A and B are 1.41 and 2.3, respectively. Note 
that, in this paper, we only consider the case of 
transverse electric field. The electric fields in 
layers A and B are written as: 

  yêE ( , ) ( ) x zAi k x k z

A x z E z e   (8) 

  yêE ( , ) ( ) x zBi k x k z

B x z E z e   (9) 

Here, 

)sin(00 kk x  ,  2
0 1 sin /zA A A A Ak k ε μ θ ε μ  , 

 2
0 1 sin /zB B B B Bk k ε μ θ ε μ  , with ck /0  .   

is the angle of the incident light. Also, 
1, 1.9881, 5.29A B A Bμ μ ε ε    . Inside the 

layers, the electric field is governed by the 
Helmholtz equation [10]: 

 
2

2 2 2
2

/ 0j j x

d E
ε μ ω c k E

dz
    (10) 

The subscript ‘j’ denotes the number of the 
layers. At the interface between two layers, we 
can apply the boundary conditions: 









dz

dE
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dE

EE


11  (11) 

Therefore, by applying the boundary 
conditions in the interfaces between layers we 
can employ the transfer matrix to combine the 
electric field at z  and zz   [10-13]: 
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here, BAi , , ,A A Bz d z dB     and 

Nl ,...,1 , where N  is the total number of the 
layers in the fractal structure. And finally, we 
have the global transfer matrix: 

BAiwhrezmM
N

l
il

g ,)(
1




 (13) 

The tangential components of the electric and 
magnetic fields at incident side ( 0z ) and the 
transmitted site ( Lz  ) are related by the 
following matrix equation: 

LzyN

yNg
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E
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 (14) 

Finally, the transmission can be obtained as 
*ttT   where  2

11 22 12 222 / g g g gt p pM pM p M M     

and )cos(p . 

 
Fig. 7. Transmission spectrum of the SDCLFS with 
string S ranging from 1 to 5 at normal incidence 

with 0 0,
4 4A B

A B

λ λ
d d

n n
   . 
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Fig. 8. Transmission spectrum of the ADCLFS with 
string S ranging from 1 to 5 at normal incidence 

with 0 0,
4 4A B

A B

λ λ
d d

n n
  . 

III.  NUMERICAL SIMULATIONS 
The transmission spectrum of the SDCLFS 
and ADCLFS are shown in Figs.7 and 8. The 
self-similarity property is the most important 
characteristic of the fractal structure. A self-
similar object is exactly or approximately 
similar to a part of itself (i.e., the whole has 
the same shape as one or more of the parts). 
Self-similarity is a typical property of the 
fractals. We can easily observe the self-similar 
property in the transmission spectrum of the 
SDCLFS and ADCLFS. Admittedly, the self-
similarity is clearly seen in both of these 
structures (CLFS and DCLFS) but by 
increasing the number of string in any of them 
the structures graphs fluctuated gently around 
the maximum transmission. To illustrate this 
property, the transmission spectrum of the 
SCLFS is shown in Fig. 9.  

In continue we investigate the transmission 
properties of the SDGSFS and ADGSFS with 
different string number and plot the 
transmission spectra in Figs.10 and 11, 
respectively. Figure 10 with S=1 describes the 
transmission spectrum of the first string of the 

SDGSFS, the main transmission peak in the 
central frequency is a sole peak.  

 
Fig. 9. Transmission spectrum for the SCLFS with 
string S ranging from 1 to 5 at normal incidence 

with 0 0,
4 4A B

A B

λ λ
d d

n n
  . 

 
Fig. 10. Transmission spectrum of SDGSFS with 
string S ranging from 1 to 5 at normal incidence 

with 0 0,
4 4A B

A B

λ λ
d d

n n
  . 

The transmission spectrum of the second string 
of the SDGSFS is shown in Fig. 10 (S=2) that 
main transmission peak in the center frequency 
is made up of 3 small side-bands. And for the 
third string of the GSFS is made up of 5 small 
side-bands and so on. We can prove the rule 
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that the main transmission peak of the 
SDGSFS will have more sidebands when 
string S increases. 

 
Fig. 11. Transmission spectrum of SDGSFS with 
string S ranging from 1 to 5 at normal incidence 

with 0 0,
4 4A B

A B

λ λ
d d

n n
  . 

 
Fig. 12. Transmission spectrum for half of 
ADGSFS with string S ranging from 1 to 5 at 

normal incidence with 0 0,
4 4A B

A B

λ λ
d d

n n
  . 

By analyzing the transmission spectrum of 
ADGSFS (Fig. 11) one can see that, he stop 
band which the transmission modes appear 
inside it, widen and localization of the modes 

increase and they get closer to the center of the 
stop band by increasing the number of string. 
Same as the case of SDGSFS, we can prove a 
rule that the localization of modes will 
increase by increasing the number of string. 

Due to the rule that mentioned above about the 
localization of modes, the SGSFS structures 
have been studied and results verified this rule 
(see Fig. 12). 

IV.  CONCLUSION 
In this paper the optical properties of some 
fractal structures has been investigated. First, 
we designed the symmetric dual cantor-like 
fractal structure, asymmetric cantor-like fractal 
structure and the single cantor-like fractal 
structure; and simulated their transmission 
spectrum. The simulation results showed an 
interesting rule. This rule says that the self-
similarity of the fractal structure can form a 
self-similar transmission spectrum which by 
increasing the number of string, the diagrams 
fluctuates around the maximum transmission 
gently. Then, the transmission properties of 
the symmetric dual golden section fractal 
structure, the asymmetric dual golden section 
fractal structure and the single golden section 
fractal structure have been analyzed. In the 
symmetric dual golden-section structure the 
number of side-bands in the main peak of the 
transmission spectrum depends on the string 
number. Also, in the asymmetric dual golden-
section structure the position of the modes that 
appears in the stop band depend on the string 
number; and their localization increases by 
increasing the string number. 
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