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ABSTRACT— In the present article we report 
the dynamical behavior of entanglement 
between π-electrons and photons in Graphene. 
It is shown that the degree of such 
entanglements depend on the orientation of π-
electron momenta relative to the photonic 
polarization. Moreover, we show that as the 
detuning between the π-electron transition 
frequencies and that of the photons is increased, 
the degree of entanglement decreases. 
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I. INTRODUCTION 
Graphene, a two-dimensional sheet of 
graphite, because of its extraordinary 
properties, has recently attracted much interest 
[1-7]. Such an interest originates from the fact 
that in graphene the so-called π-electrons are 
almost free with long-mean-free path, phase-
coherence length, etc. [2-4]. These properties 
have made it feasible to use graphene, or 
layers of it, to develop spintronic devices [5-
7]. Furthermore, nanoscaled structures (wires, 
dots, etc.) made of graphene have been 
proposed for use in the development of 
quantum computers, quantum communication 
channels and so forth [8-10]. A major role in 
these applications is played by quantum 
entangled states [11-13]. Quantum entangled 
states have been well established to form the 
corner stone of quantum information 
processing, including quantum 
communication, quantum teleportation, 
cryptography, etc. [14-17]. In fact, for such 
purposes it is required that physical 
information contained in a composite system 

be either local or distributed amongst the 
subsystems, giving rise to entangled states [18, 
19]. The research on the entanglement then 
focuses on two subjects: How the 
entanglement is implemented and how it may 
be quantified [20, 21]. It is therefore the main 
aim of the present work to report the properties 
of entanglement between π-electrons and 
photons in graphene [22, 23]. Neglecting the 
spin states, the state of π-electrons in 
graphene, near the Dirac points, can be 
described by the eigenstates of single-particle 
Hamiltonian, ( . )fH v p  where fv ,   and 

p  denote the Fermi speed, pseudo-spin and the 
momentum, respectively [1, 24]. Here the 
pseudo-spin operators act on the graphene 
"lattice sites" [1]. When the π-electron 
interacts with an external electromagnetic 
field, the lattice sites and the field are coupled 

via σ  and
e

c
 p p A , where A


 is the vector 

potential [25]. This fact, as we shall see, leads 
to the entanglement between π-electrons and 
photons in graphene. 

In this article, therefore, we consider a π-
electron in graphene, interacting with a one-
mode quantized linearly polarized 
electromagnetic field and report the dynamical 
behavior of entanglement between pseudo-spin 
(conduction and valance bands) [26, 27] and 
photonic states. To this end, we add the 
interaction Hamiltonian to that of π-electron's 
and proceed to calculate the time-evolution 
operator (TEO). In what follows, however, 
dissipative effects (such as losses in the 
graphene itself, lossy medium where the 
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interaction occurs, etc.) have been ignored. In 
this regard we emphasize that the inclusion of 
any type of dissipation into the system leads to 
mixed states (ensembles) for which one has to 
appeal to, for instance, a mater equation to 
determine the density operator [28]. 

Using the so calculated TEO, we then 
determine the von-Neumann entropy, a 
measure of entanglement [29, 30], as a 
function of time. We thus show that the degree 
of entanglement between π-electron's states 
and photons in graphene strongly depends 
upon the photonic frequency and its 
polarization. From an analysis of the von-
Neumann entropy, we demonstrate that by 
adjusting the photonic frequency and its 
polarization, one can control the degree of 
entanglement. In fact, when the photonic 
frequency is in resonance with inter-band 
transitions, the entanglement is drastically 
enhanced. Moreover, when the electronic 
momentum is along the photonic polarization 
the entanglement vanishes, while in the 
perpendicular case it is maximal. We further 
show that in graphene the entanglement is 
stronger than its ordinary counterparts, such as 
the entanglement of two-level atoms and 
photons [31].  

The present article is organized in the 
following manner. After the introduction, we 
devote section II to a discussion of the 
minimal coupling Hamiltonian which governs 
the dynamical behavior of the system of 
photons and π-electrons. We then proceed to 
the procedure with which the dynamics of 
entanglement is determined in section III. 
Section IV is devoted to the numerical results 
of our calculations and concluding remarks are 
made in section V. 

II. THE HAMILTONIAN MODEL 
The states of π-electrons in a graphene sheet, 
lying in the x-y plane, is governed by the 
Hamiltonian [1]: 

 .fH v p σ p
 (1) 

where fv  is the electronic Fermi speed, p  

and p̂  represent magnitude and direction of 
momentum, respectively. σ  represents the 
Pauli pseudo-spin matrices, acting on graphene 
sublattices [24]. In writing Eq. (1) it is 
assumed that the momentum lies around a 
Dirac point and tight-binding approximation 
has been employed [32]. The eigenvalues and 
eigenstates of the Hamiltonian in Eq. (1) are 
easily obtained as, 

11

2
j ie 


 

  
   (2) 

with pj fE v  and 1    for 1, 2j  , 

respectively. It is noted that the eigenstates 
given in Eq. (2) are, in fact, particular 
combinations of sublattice sites and the angle 

  is defined as  1tan y xp p . When the 

graphene sheet is influenced by a single mode 
quantized electromagnetic field, the 
Hamiltonian of Eq. (1), in the minimal 

coupling regime,
 
p p A

e

c
  , becomes  

   

1
( . )

2

ˆ

fH a a v

g a a

    
 

  









†

†

σp

σ
 (3) 

where the electromagnetic field is assumed to 
propagate in a direction normal to graphene 
sheet with its polarization coplanar with it. In 
Eq. (3) ( )†a a  and ̂  represent the photonic 
creation (annihilation) operator and 
polarization unit vector, respectively. It is clear 
from the last term of Eq. (3) that the π-
electrons and photons are coupled through 

g ( 22f

e
v c V

c
 


   in standard notations). 

It is noted that this coupling is, under the same 
conditions, about ten times stronger than that 
of photon-two-level atoms, consequently, a 
larger photon-π-electron entanglement is 
expected. This point will be further addressed 
in section IV. 
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To clarify the effect of photon and π-electron 
interaction, the last term of Eq. (3), we cast the 
Hamiltonian into a different form. Noting that, 

1 2 1ˆ( )σ i Sin Cos        
 (4) 

and 

2 2 1
ˆ( ) Cos i Sin   σ      

 (5) 

where   is the angle between photonic 
polarization and electronic momentum, one 
finds, 

 
  

†

†

†

1 1

2 2 z

z

H a a

g Cos a a

i g Sin a a  

     
 

 

  

 





 

 

  
 (6) 

In obtaining Eq. (6) new Pauli matrices,  , 

with bases j , such that 

1 1 2 2z     
 (7) 

and 

†
1 2x yi         

 (8) 

have been introduced. The transition frequency 
between π-electron states, 2 fv p , is 

denoted by  . From Eq. (6) it is clear that the 
bases are formed by 

, ; 1, 2j jn n j    , where n  

denotes a photonic state. We further note that 
the last two terms of Eq. (6) mix the photonic 
and electronic states, giving rise to photon and 
π-electron entanglement in graphene. 

As a matter of comparison with (two-level) 
atom-photon Jaynes–Cummings (J-C) 
Hamiltonian, in the rotating wave 
approximation [31], Eq. (6) contains two 
additional terms of the forms 

 † , , etc.za a a     This fact, in addition to 

a stronger photon and π-electron coupling, is 
then expected to enhance the corresponding 
entanglements. The strength of these two 

terms involves the angle   which in turn 
maybe used to control the entanglement. This 
fact indicates that, generally, photons and π-
electrons in graphene are more correlated 
(entangled) than atoms and photons in 
standard J-C models. In the next section we 
use the Hamiltonian of Eq. (6) to construct the 
time evolution operator and, consequently, 
determine the dynamics of photon and π-
electron entanglement. 

III.  DYNAMICS OF THE VON NEUMANN 

ENTROPY 
Although there are a number of measures to 
quantify entanglement [29], we choose to use 
the von Neumann entropy which maybe 
directly related to information theories [30]. 
For a bipartite system containing parts A and 
B, the von Neumann measure of entanglement 
is defined as, 

 
 

2

2

log

log ,

AB A A

B B BA

S Tr

Tr S

 

  

 

   (9) 

where the reduced density matrices are 

 ( ) ( )A B B A ABTr  
 (10) 

In Eq. (10), the total density operator (matrix) 
is defined as | | ,AB AB AB    with | AB   

being the state of the combined system. If the 
state of the composite is not a stationary one, 
from the definition of AB , it is clear that the 

degree of entanglement evolves with time. The 
evolution of entanglement is then determine by 
the action of time-evolution operator, 

 expU i H t   , on the initial state. In 

what follows we describe the procedure of 
computing the evolution of entanglement. 

When the Hamiltonian of Eq. (6) acts upon the 
identity in the Hilbert space of the whole 
system 

, 1,2

| , , |j j
n j

n n 


  one finds that it 

has non-vanishing matrix elements with 
respect to the states, 
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1 1

1 2

2 2

|1 | , | 2 | 1, ,

| 3 | 1, | 4 | , ,

| 5 | 1, | 6 | 1, ,

n n

n n

n n

 
 
 

      
      
         (11) 

These states are marked "original" in what 
follows. Parenthetically, we mention that the 
energy nonconserving states, like | 2 , | 3 , etc.   
in Eq. (11) originate from operators, 

†, , etc.z za a  , in the Hamiltonian, which, in 

turn, derives energy nonconserving transitions. 
The 6 6 matrix representation of H is then 
diagonalized giving 6 "dressed" states. In the 
dressed state representation the time-evolution 
operator is also diagonal with elements 

 expii iU iE t   , where , 1,...,6iE i   are 

the energy eigenvalues. Transformation of the 
diagonal representation, iiU , to the original 

bases is then achieved by the action of the 
transformation matrix, formed by inner 
products of the "original" and "dressed" states. 
In the next section the aforementioned 
procedure is employed to investigate the 
entanglement between photonic and π-electron 
states in graphene. 

IV. NUMERICAL RESULTS 
As was mentioned in the previous section, the 
time evolution of entanglement, as given in 
Eq. (10), is determined by the eigenvalues of 
the Hamiltonian in Eq. (6). To calculate these 
eigenvalues one encounters a sixth-order 
algebraic equation, for which no analytical 
solutions exist. In this section, therefore, we 
numerically present the time variation of von 
Neumann entropy, Eq. (10), as the degree of 
photon and π-electron entanglement. To this 
end, we assume that initially the system is 
prepared in a separable (unentangled) state 

0 1| | 5 |     . This defines a state in which 

the π-electron is described by 1|   of Eq. (2) 

and five photons are present. The time 
evolution of the photon and π-electron 
entanglement is then computed via  the 
procedure described at the end of the previous 
section. This procedure and a glance at the 
Hamiltonian of Eq. (6) indicate that the 
dynamics of entanglement between photons 
and π-electrons strongly depends upon the 

angle   and the detuning, 1 ω ΩΩ   , 

measured in units of  . We note that in this 
unit the detuning is symmetric about the 
resonance, 1  , and increases away from 
this value. Therefore, in Fig. 1 we illustrate the 
behavior of entanglement versus   and time, 
and in Fig. 2 the same is depicted for different 
detuning, respectively. 

 
Fig. 1. Degree of entanglement, SAB, versus time 
and the angle between photonic polarization and π-
electronic momentum. 

For clarity, the behavior of entanglement, at a 
particular instant of time (projections of Fig. 1, 
Fig. 2 onto the time axis) is depicted in Fig. 3, 
Fig. 4, as functions of   and  , 
respectively. It is observed from these that, as 
expected for bipartite systems, the 
entanglement behaves oscillatory whose 
characteristics, period, extrema, .etc depend 
upon   and  . Consideration of Fig. 1, 
Fig. 3 indicates that when photonic 
polarization and π-electronic momentum are 
parallel, 0 ,  , no entanglement occurs. 
This is a reasonable result since the last term 
of Eq. (6), that mixes the π-electron and 
photonic states, vanishes at these angles. An 
increase in this angle, generally, enhances the 
entanglement up to its maximum value of one. 
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Fig. 2. Degree of entanglement, SAB, versus time 
and detuning of photon and π-electron frequencies, 
as measured in units of  , at 3  . 

Moreover, it is observed from Fig. 2, Fig. 4 
that as the detuning is decreased the photon 
and π-electron states become more entangled, 
again reaching its maximum value of one at 
the resonances, 1  . This result is also 
reasonable since as the detuning increases then 
transition between states become unlikely, 
giving smaller entanglements. 

 
Fig. 3. Degree of entanglement, SAB, versus the 
angle between photonic polarization and π-
electronic momentum at a fixed time, t=10 fs, and 
detuning, 0.5  . 

As a matter of comparison, the behavior of 
entanglement between two-level atoms 
(atomic qubits) and photons, in the celebrated 
Jaynes–Cummings model along with that of π-
electron (electronic qubits) in graphene is also 
illustrated in Fig. 5. From this figure it is 
concluded that the π-electrons and photons 
become more correlated in graphene than the 
system of atom-photon. The reason for such 
enhancement in the entanglement, as 

compared to that of two level atoms and 
photons is the fact that π-electron is coupled to 
the photons more strongly along with 
additional terms in the interaction 
(consequently more state are involved in the 
entanglement). Moreover, the entanglement 
oscillations occur at a smaller frequencies 
(longer periods) for π-electrons compare to 
that of two-level atoms. This is again, as a 
simple calculation starting from partial tracing 
of the density matrix and using completeness 
of the eigenstates indicates, is due to the 
stronger coupling for the former. 

 
Fig. 4. Degree of entanglement, SAB, versus 
detuning, as measured in units of   at a fixed 

time, t=10 fs and 3  . 

 
Fig. 5 Degree of entanglement, SAB, for the system 
of atom-photon (solid curve) and π-electron-photon 
(dashed curve). The curves are drawn for equal 
coupling strengths and 3   and 0.5   

(dashed curve). 

V. CONCLUSION 
In the present work we report the dynamics of 
photon and π-electron entanglement in 
graphene. Although the results of our 



M. Ostovari, et al. Dynamics of Entanglement between Linearly Polarized Photons … 

46 

investigation are thoroughly discussed in 
section IV, we outline the more important 
aspects of this report in this section. 

 The degree of entanglement between the 
π-electrons and photons strongly depends 
upon the orientation of electronic 
momentum and photonic polarization, 
when they are parallel no entanglement 
occurs. 

 The degree of such an entanglement also 
depends on the photon and π-electron 
energy detuning; away from resonance it 
decreases, while at resonance the 
entanglement reaches its maximum. 

 The system of π-electrons (qubits) and 
photons in graphene is more correlated 
(entangled) than that of two-level atoms 
(atomic qubits) and photons in the Jaynes–
Cummings models. 

In brief, the material presented in this article 
provides novel means of creation and control 
of entanglement 
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