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ABSTRACT— We perform a theoretical
investigation on the Goos-Haenchen shift (the
lateral shift) in one-dimensional photonic
crystals (LDPCs) containing left-handed (LH)
metamaterials. The effect was studied by use of
a Gaussian beam. We show that the giant
lateral displacement is due to the localization of
the electromagnetic wave which can be both
positive and negative depending on the
incidence angle of Gaussian beam that can be
excited the forward and backward surface
states, respectively. Dependence of beam width
on the incidence angle of beam and thickness of
air layer for both backward and forward
surface states are studied in this paper. We also
find that the weak lossy in LH layers of 1DPCs
may affect these shifts. These giant negative and
positive lateral shifts are smaller than that of
the lossless structure.
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|.INTRODUCTION

Since the original work of Yablonovitch [1]
and John [2], photonic crystals composed of
periodic dielectric media have attracted
considerable attention [3], [4]. The Photonic
crystal structures inhibit the propagation of
electromagnetic waves in a certain range of
frequencies, in analogy with electronic band
gaps in semiconductors. These structures may
contain layers of left-handed metamaterial,
which we refer to as left-handed photonic
crystal.
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In 1968, Veselago [5] proposed the concept of
left-handed metamaterials (LHMs) with both
negative permittivity and negative
permeability, and predicted some peculiar
electromagnetic properties such as the reversal
of Doppler shift for radiation [6], the reversal
of Cherenkov radiation [7], the negative
refraction [8] and reversal of Goos—Hé&enchen
shift [9].

When a light beam illuminates the interface
between two homogeneous media under total
internal reflection, the barycenter of the
reflected beam does not coincide with that of
the incident one: that is the Goos—Hé&enchen
effect [10]. The Goos-Hé&enchen shift has
potential applications in various optical fields
such as oscillating wave sensor [11], [12]
optical temperature sensor [13] and optical
waveguide switch [14]. The Goos-Héenchen
shift has also used as a probe in evanescent
slab waveguide sensors [15]. Furthermore with
the development of near-field scanning optical
microscopy and lithography [16], the Goos-
Hé&enchen shift has attracted more attention for
potential device applications in optical
modulations. Recently, the Goos—Haenchen
shifts have been extensively studied in various
situations, for example, absorbing media [17],
electro-optics crystal [18], and periodic
structures [19]. The Goos—Héaenchen shifts
related with LHMs have been extensively
studied for potential device applications. The
Goos-Héenchen shift is usually much less than
the beam width. However, larger beam shifts
may occur in the layered systems supporting
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surface waves, which are able to transfer
energy along the interface [9].

Surface modes are a special type of wave
localized at the interface separating two
different  media.  The  existence  of
electromagnetic surface waves was suggested
by Kossel and later considered in an
approximate manner by Arnaud [20].
Recently, the band theory of periodic media
was used in an exact analysis of the optical
surface waves [21]. In periodic systems, the
modes localized at the surfaces are known as
Tamm states [22], first found as localized
electronic states at the edge of a truncated
periodic potential. Surface states have been
studied in different fields of physics, including
optics [21], where such waves are confined to
the interface  between periodic and
homogeneous media [23], [24].

In this paper, we consider a one-dimensional
photonic crystal containing LHM layers to
show that excitation of forward surface wave
results in a positive Goos—Héenchen shift and
excitation of backward surface wave results in
a negative Goos—-Hdaenchen (GH) shift. This
paper is organized as follows: In Section 2, we
introduce the model of the system under
consideration and formulate the GH shift and
beam width variation of a Gaussian beam
reflected from LH photonic crystal. In Section
3, we discuss dependence of GH shift and
beam width on the incidence angle of beam
and thickness of air layer. Also, in this section
the effect of lossy metamaterial on GH shift
are presented. Finally, paper is concluded in
Section 4 with brief comments.

Il. STRUCTURE AND FORMALISM

We consider that the propagation of a
Gaussian beam through a one-dimensional
photonic crystal consists of cells, each made of
LH and right-handed (RH) uniform layers of

widths d, and d; whose respective indices of
refraction are n, and n;, respectively. LH
photonic crystal was capped by a layer of the
LH metamaterial (with widthd_ ) and this

layered structure was separated from dense
medium by an air layer as shown in Fig. 1. To
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study the GH shift in this structure, we
suppose that the dielectric layers are in the x-y
plane and the z direction is normal to the
interface of each layer.

We consider that the incident beam has a
Gaussian profile as:

E, (x) = exp|- (x/a) —ik o} )

where a is the width of beam, € is the beam
incidence angle and k,, = k,sin @ is the wave
number component along the interface with
Ky = @4/(g,440) /€. We can define the lateral

shift A of a wide beam reflected by a periodic
dielectric structure as:

A=—dp/dk, (2)

where ¢ is the phase of the reflected
coefficient and k, is the wave vector
component along the interface. The relation
(2) is obtained with the assumption that the
beam experiences total internal reflection and
the phase of reflection coefficient ¢ is a linear

function of the wave vector component k,
across the spectral width of the beam.
Meanwhile, in the case where the phase ¢ is
not a linear function of the wave vector
component, k,, the formula (2) for the shift of

the beam as a whole is not valid [25]. In such a
case, one can first obtain the structure of the
reflected beams as follows:

E == [ RKIEKIE D, (3

where E, is Fourier spectrum of incidence
beam and R(k,) is the reflection coefficient.

For calculation of the Bloch modes, we use the
well-known transfer matrix method [26], [27].
By using transfer matrix method the reflection
coefficient for our geometry can be found as
R=-M,,/M,; where, M3, and My; are the
elements of the transfer matrix. The relative
beam shift, A,, can be defined as the
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normalized first momentum of the electric field
of the reflected beam, where

A, = a‘”j_io x”E,(x)zde‘:E,(x)zdx)_l 4)

<—>d £
L d.d
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Fig. 1 Geometry of the problem. In our calculations,
we take the following values: d, =2.5cm, d, =1cm,

d,=06d, n, =35 g, =1,n=-2,4=-1 n, =15
=1 g =14, =1.

The second moment of the reflected beam,
defined by above equation, characterizes a
relative width of the reflected beam as

W=./A, [9].

I11.RESULTS AND DISCUSSION
We chose the following parameters for the

structure: d,=25cm, d,=1cm, d =0.6d,
N, =3.5, =1 n=-2, u=-1
n,=15 w,=1 ny=1  p,=1. Here

Hp, 1y, M, and g, are magnetic permeabilities

of dense media, LHM, RHM and air layers,
respectively. We also take Gaussian beam
width as a =100 cm . First, for simplicity we

consider photonic crystal containing the
lossless metamaterials.

The surface states can be obtained from the
dispersion relation [28]. In Fig. 2, we
presented the dispersion diagram of the surface
modes for d.=0.6d, in the first spectral gap.

The slope of the dispersion curve determines
the corresponding group velocity of the mode.
As shown in Fig. 2, we observe the mode
degeneracy, i.e. for the same frequency @ (or
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wave number k=w/c=1.037cm™) there
exist two modes with different value of
normalized wave number component along the
interface £ in the first gap. For the photonic
structure considered in Fig. 1, the surface
waves at the interface can be either backward
propagating corresponding to point (a) of Fig.
2 with =136 or forward propagating
corresponding to point (b) of Fig. 2 with
S =105.

1.06

1.05

1.03

11927997492 13 1.4
B

Fig. 2 Dispersion properties of the surface states in
the first spectral gap for d_ =0.6d, . Points (a) and

(b) correspond to backward and forward surface
states respectively.
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Fig. 3 Relative beam shift and beam width versus
the incidence angle corresponding to forward (a),
(b) and backward (c), (d) surface states. Here
L =3.6¢cm for (a), (b) and L = 2.12cm for (c), (d).
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In Figs. 3(a) and 3(b) (Figs. 3(c) and 3(d)), the
dependence of relative beam shift, A;, and

relative beam width, W, on the incidence
angle corresponding to a forward (backward)
surface state are plotted, respectively. It is
obvious that relative beam shift of wave in
Fig. 3(a) is positive, while it is negative as
shown in Fig. 3(c). Indeed, in this structure,


https://mail.ijop.ir/article-1-77-en.html

[ Downloaded from mail.ijop.ir on 2025-11-06 ]

A. Namdar et al.

we have forward wave for incidence angle of
0 =17.45", as shown in Fig. 3(a). To obtain
backward wave, we can use a Gaussian beam
with incidence angle of ¢ =22.86°, as shown
in Fig. 3(c). The resonant points of the beam
shift and beam width appeared in Fig. 3
correspond to the phase matching condition for
K, .

Figure 4 shows the relative beam shift and
beam width versus the thickness of air layer
for the case of forward (Figs. 4(a) and 4(b))
and backward (Figs. 4(c) and 4(b)) surface
states. In Figs. 4(a) and 4(b), we take the
incidence angle of Gaussian beam @ =17.45°
for forward wave corresponding to the peak
points in Figs. 3(a) and 3(b). Similarly, we
take in Figs. 4(c) and 4(d) 0 =22.86" for
backward wave corresponding to the peak
points in Figs. 3(c) and 3(d).
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Fig. 4 Relative beam shift and beam width versus
the thickness of air layer for 8 =17.45° (a), (b)
and 9 =22.86" (c), (d) corresponding to the peak
points in Figs 3(a), 3(b), 3(c) and 3(d), respectively.

The resonances observed in Fig. 4 suggest that
for some thickness of air layer, for example
L=3.6cm and L =2.12cm, the quality factor

of the surface mode will increase, thus the
relative beam shift and beam width of the
reflected Gaussian beam will increase
accordingly. However, for large or small
thickness of air layer, the relative beam shift
and beam width are small because no surface
wave is excited. Figs. 5(a) and 5(b) show the
profiles of the reflected (solid) and incident
(dotted) beams as the field amplitude versus
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coordinate x. Here Figs. 5(a) and 5(b)
correspond to forward and backward surface
states with the incidence beam angles of
0=17.45" and 0 =22.86", respectively.

Meanwhile, to gain a deeper understanding on
the properties of reflected beam we study the
effect of changing the spatial widths of the
incident beam on the shape of the reflected
beam and value of the GH shift. Our study
shows that the relative beam shift and beam
width will moderately decrease with the
increasing width of the incident beam.

1 " 1

(a)

5 Y 5 5 0 3

x/a x/a

Fig. 5 Profiles of the reflected (solid) and incident
(dotted) beams shown as the field amplitude versus
coordinate x for incidence angle of beam (a)
9 =17.45 in the case forward surface state (b)
6 =22.86° in the case backward surface state. Field
distribution of the surface states are shown in (c)
and (b) corresponding to (a) and (b). Here
d=d, +d,.

It is obvious that the reflected beam has a
distinctive double peak structure. The first
peak corresponds to a mirror reflection and the
second peak is shifted relative to the point of
incidence which appears due to the excitation
of surface waves. At the resonance, the relative
beam shift becomes larger than the beam
width. The components of the beam spectrum
outside this region (shown in Figs. 3(a) and
3(c)) are reflected in the usual mirror like
fashion, while the spectral components of the
beam near the resonance transform into an
excited surface wave. These spectral
components are responsible for the appearance
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of the second peak in the shifted reflected
beam.

To better understanding the GH shift, we
perform numerical simulation to show the
backward and forward surface state already
presented in Fig. 5. The field distribution of
surface states corresponding to Figs 5 (a) and
5(b) are shown in Figs 5(c) and 5(d),
respectively. To do this, we considered the
relation (3) for the reflected beam and
calculated the dependence of field amplitude
on the coordinate z using transfer matrix
method. We conclude that the surface wave,
excited at the interface, has a distinctive
vortex-like structure. This surface wave
transfers energy in the negative or positive
direction depending on the backward or
forward surface state. Thus the energy is
reflected from the interface as a shifted beam.
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Fig. 6 Relative beam shift (a) and beam width (b)
versus the imaginary part of the dielectric
permittivity corresponding to forward wave (solid)
and backward wave (dotted).

It is known that losses are always present in
left-handed materials. Stockman has proved
that negative refraction can be reached only if
substantial losses are presented [29]. For
studying effect of losses, which may be
present in LHM layers of our structure, we add
the imaginary parts to the dielectric
permittivity and magnetic permeability of
LHM layers. We suppose & and g, are
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complex quantities and can be expressed as the
real and imaginary parts of them. For
simplicity of analysis, we take
Im(z,) = -2x10"° and vary the imaginary part
of ¢,.

We plot relative beam shift and beam width
versus the imaginary part of the dielectric
permittivity for forward wave (Figs. 6(a) and
6(b), (solid)) and for backward wave (Fig. 6(a)
and 6(b), (dotted)). As shown in Fig. 6, the
major effect produced by the losses is
observed for shifted beam component because
the losses in LHM affect mostly the surface
wave and, therefore, for large value of loss the
surface state can’t be excited then relative
beam shift or GH shift is negligible. Also, the
beam width of wave will be decrease.

I\VV. CONCLUSION

Briefly, we investigated the excitation of the
electromagnetic surface wave in a slab of a
right-handed layer separating a one-
dimensional periodic photonic crystal and a
homogenous dielectric medium. We showed
that such structure could exhibit a giant lateral
shift due to the resonant excitation of surface
waves at the interface between the right-
handed layer and photonic crystal containing
left-handed layers. These beam shifts could be
either positive or negative depending on the
type of the surface waves excited by incoming
beam. Indeed, excitation of forward surface
wave results in a positive Goos—Haenchen
shift and excitation of backward surface wave
results in a negative Goos—-Héaenchen (GH)
shift.

We also performed a series of numerical
simulations to model the field distribution of
the beam scattering for both types of backward
and forward surface states. We observed that
weak loss can affect GH shift; so that the GH
shift is large in lossless structure rather than in
lossy structure.
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