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ABSTRACT— A new class of gratings is produced 

by combining the radial grating (RG) with the 

Fresnel zone plate (FZP). Besides having an 

azimuthal periodicity, these gratings focus the 

incident beam at a specific distance. This paper 

investigated the diffraction from modified 

Fresnel zone gratings (MFZGs) theoretically and 

experimentally. Our approach was to solve the 

Fresnel-Kirchhoff integral in the cylindrical 

coordinate system for a plane beam on an 

MFZG. The experimental results of diffraction 

patterns of a laser beam from the amplitude type 

of MFZGs confirmed the theoretical predictions 

well. The near-field diffraction patterns agreed 

with the patterns obtained from theoretical 

calculations. 

KEYWORDS: autofocusing, diffraction grating, 

Fresnel diffraction, Fresnel-Kirchhoff integral, 

radial grating. 

I. INTRODUCTION 

The wave is a fundamental aspect of nature, and 

light showcases one of its most exquisite 

effects. The diffraction phenomenon, evidence 

of light's wave nature, holds significance in 

physics and engineering fields related to wave 

propagation [1]. Creating one-dimensional light 

patterns is most easily achieved through the 

interference of two coherent beams. Another 

way to achieve different diffraction patterns is 

to use gratings which are common tools for this 

purpose [2]. Due to their periodic structure, 

diffraction gratings are optical components that 

induce light diffraction and result in light 

deviation at various angles. Linear gratings are 

the most known gratings, characterized by a 

one-dimensional periodic structure that can 

alter the amplitude or phase of the incident 

wave during transmission or reflection [3]. 

Gratings have various applications in optical 

science and related technologies. They are used 

in interferometry, spectrometry, moiré 

deflectometry, displacement measurement, etc. 

Gratings can be utilized in spectrometers, 

monochromators, and astronomical instruments 

like spectrographs to analyze the light emitted 

from celestial bodies for information on their 

composition, temperature, motion, and other 

properties [4]–[7]. RGs are another type of 

grating, where a set of lines extended radially 

from a common point is constructed, and the 

azimuthal angles corresponding to the adjacent 

lines are equal. The spatial periodicity increases 

with the radius in the azimuthal direction [8].  

The FZP, designed by Fresnel in 1822, 

functions as a converging lens that focuses the 

incident beam at a specific distance. The 

diffraction grating based on the FZP also 

exhibits autofocusing properties [9]. FZP has 

been used in X-ray microscopy, spectroscopy, 

lithography, X-ray, and UV focusing when 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

26
-0

2-
07

 ]
 

                             1 / 10

mailto:m.yeghaneh@cfu.ac.ir
https://mail.ijop.ir/article-1-569-en.html


A.M. Khazaei, et, al. Theoretical and Experimental Investigation of Plane Wave Diffraction … 

196 

acting as a lens and diffractive optical element 

with opaque and transparent rings. These 

applications are unattainable with refractive 

lenses due to their absorption [10]. 

In the last few decades, laser beam shaping has 

received much attention. Various beams, such 

as super Gaussian near top hat irradiance 

profile, the Airy beam, Laguerre-Gaussian 

beam, Mathieu beam, carpet beam, etc., can be 

produced by applying specific phases to the 

incident Gaussian beam. A specific phase is 

applied to the input beam using DOEs 

(diffracted optical elements), SLM (spatial light 

modulator), and phase plates. Such elements 

produce the mentioned beams through phase 

modulation [11]. Amplitude diffraction 

gratings can also create such beams through 

diffraction. An optical device that is made by 

manipulating the polarization of light and 

creating a singularity in the polarization, such 

as Q-plates, produces vortex beams [12], [13]. 

Recently, an interesting study was done by 

modulating light with an amplitude RG, which 

included the geometric shadow in diffraction 

patterns [8]. In addition, a comprehensive 

analysis of white light diffraction from radial 

structures was performed. A white light can 

generate a colorful rainbow in the intensity 

pattern after diffraction from an amplitude RG 

[14].  

A comprehensive theoretical analysis gives us 

a point of view according to reality and an 

understanding of the nature of propagation and 

what happens to the beam after diffraction. For 

example, observing the Talbot effect in the 

beam pattern of the radial carpet beams makes 

our analysis simpler when looking at the 

diffraction pattern from the RG [8], [15]. 

In this work, the transmission of a plane wave 

through an MFZG with sinusoidal and binary 

profiles, a combination of a FZP and an RG, is 

analyzed theoretically and experimentally. The 

theoretical analysis uses the Fresnel–Kirchhoff 

diffraction integral to analytically examine the 

propagation of plane waves from MFZG with 

sinusoidal and binary profiles. The 

experimental analysis involves recording a 

laser beam's near-field diffraction patterns at 

specific distances from the grating. The 

experimental patterns obtained fully validate 

the analytical results. 

II. THEORY 

A. Radial grating 

The RG is a type of periodic diffraction grating 

with an azimuthal periodicity in the polar 

coordinate system where its periodicity does 

not depend on the radial coordinate. 

 
Fig. 1. (a) Amplitude RGs with spoke numbers of 

5p   having sinusoidal transmission profiles, (b) 

FZP with a structure constant 20.256cms   and (c) 

an amplitude MFZG with a structure constant 
20.256cms   and 5p  . The actual size of all 

gratings is 2
4 4cm . 

The structure of this grating is a separable two-

dimensional structure in the polar coordinate 

system, whose components of the transmission 

function (r, )T  are separable in polar 

coordinates, that is: 

( , ) ( ) ( ) RT r T r T   (1) 

where ( , )r   are the polar coordinates in the 

input plane. As it was said, the transmission 

function of RG does not depend on the radial 

coordinate; that is ( ) 1RT r  . The azimuthal 

part of the transmission function is defined as 

( )T   in Eq. 1. The gratings that affect the 

incident light by changing the amplitude are 

called amplitude diffraction gratings. Indeed, 

these gratings absorb or reflect a part of the 

radiation wave energy. Amplitude RG is in the 

form of circle segments that share the circle's 

center. The equation of the transmission 

function of the RG with a sinusoidal profile of 

the amplitude is written as follows: 

   
1 1 1

( ) 1 cos
2 2 4

ip ip

RGT p e e           (2) 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

26
-0

2-
07

 ]
 

                             2 / 10

https://mail.ijop.ir/article-1-569-en.html


International Journal of Optics and Photonics (IJOP) Vol. 17, No. 2, Winter-Spring, 2023 

197 

where p  shows the grating spoke numbers. 

The visibility of this grating is set to vis=1. 

Figure 1 (a) shows an example of an amplitude 

RG with a sinusoidal profile having a spoke 

number 5.p   

B. Fresnel zone plat (FZP) 

FZP, made of consecutive bright and dark 

concentric circles with different widths, is a 

diffractive optical element. The period of this 

grating depends inversely on the distance from 

its center. This element has played a significant 

role in optics in recent years. According to its 

application and used wavelength, the FZP is 

made as one-dimensional and two-dimensional 

symmetrical structures. The phase dependency 

of the FZP is proportional to the square of the 

distance from its center. The phase of the 

patterns does not depend on the azimuthal 

coordinate and only has a radial dependence in 

the polar coordinate system. Suppose this 

quadratic phase dependency in the Cartesian 

coordinate system depends on only one 

coordinate. In that case, the created pattern 

comprises several parallel lines perpendicular 

to the corresponding axis whose period 

decreases inversely with the distance from the 

beginning of the grating. This structure acts like 

a cylindrical lens in diffraction and has 

applications such as imaging, focusing X-rays, 

and making flat antennas. 

The equation of the transmission function of a 

FZP can be written as follows: 

2

FZP

1
( ) 1 cos

2
T r r

s

  
    

  
 (3) 

where  the wavelength of incident light. We 

call s f  the FZP structure constant and f is 

the farthest focal length from the grating when 

used as a diffractive lens. Figure 1 (b) shows an 

FZP with a structure constant 20.256cms   

and dimensions of 24 4cm . 

C. Amplitude MFZG with a sinusoidal 

profile 

A new type of grating is produced by 

combining the phase dependence of RG and 

FZP. We define the transmission function of the 

amplitude MFZG by sinusoidal transmission 

function as follows: 

 2
( , ) 1 cos cos

1

2
ST r r p

s
 


  

  
  

  
 (4) 

The term cos( )p  is related to the azimuthal 

structure added to the term 2 /r s  that is 

associated with the phase of the Fresnel pattern. 

Figure 1 (c) shows an amplitude MFZG with a 

structure constant 20.256cms  and 5p  . In 

the MFZG transmission function, the FZP 

phase dependency causes the beam to be 

focused. In addition, a dependency on the 

azimuthal angle gives azimuthal periodicity p  
in the polar coordinates system. Figure 2 shows 

some examples of this structure with different 

parameters s  and p . In this figure, the number 

of spokes is 3, 5, and 10. The farthest focal 

length of the grating for the wavelength of 

incident beam 532nm   is 1m and 2m for the 

first and second rows, respectively, for actual 

dimensions of the gratings equal 24 4mm . The 

dimensions of the gratings drawn in the figures 

differ from the actual size. 

 
Fig. 2. Transmittance functions for MFZG with 

different parameters f and p: incident light assumed 

to have wavelength 532nm  . The actual size of 

all gratings is 24 4 mm . 

Here, we examine this grating with a sinusoidal 

transmission function. In the following, using 

the Fresnel-Kirchhoff integral, the near-field 

diffraction of a plane wave from MFZG, 

defined as an amplitude grating, is investigated. 

In addition, the near-field diffraction of a plane 

wave from these gratings is studied 

experimentally. 
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D. Theoretical analysis of plane wave 

diffraction from an MFZG with a sinusoidal 

profile 

Here we investigate the diffraction of plane 

wave from amplitude MFZG. As mentioned 

earlier, the basis of the analytical work is the 

solution of the Fresnel-Kirchhoff integral in the 

cylindrical coordinate system. By illuminating 

this amplitude structure with a plane wave, the 

complex amplitude of the light field after the 

structure is given by [8]: 

2

2

0

2
- 2 cos( - )

0 0

U( , , ) e

( , )e e

i

i r i r

z h

dr d rT r




   

 

 




  
 (5) 

where  is the radial coordinate and   is the 

azimuthally angle in the output plane on the 

screen. Also, 
z





 , 

0

ikze
h

i z
  and 

2
k




 . 

Equation 4 can be expanded using Euler's 

formula in the following form 

 

   2 2

2

cos( ) cos( )

1
( , ) 1 cos cos

2

1
2

4

    

    
 

        

S

i cr p i cr p

T r cr p

e e
 

 

 (6) 

where /c s . By substituting Eq. 6 in Eq. 5, 

the complex amplitude of the light field after 

passing from the structure at propagation 

distance z , we have: 


 

  

2

2

2

2

0

2
2 cos( )

0 0

2 2 cos( ) cos( )

0 0

2 2 cos( ) - cos( )

0 0

U( , , z)
4

2 e

2

i

i r i r

i ri c r i p

i ri c r i p

h e

drd re e

dr d re e

dr d re e e




   

    

    

 








 

  

  

 

 

 



 

 

 

 (7) 

By using the Jacobi-Anger expansion [16]: 

cos ( ) ( )




 
i m i

m

m

e i J e    (8) 

where i  is the imaginary unit, and mJ  is the 

mth Bessel function of the first kind, and 

Hankel transform, we have [17]: 

 

 

2 2

2 2

0 0

0

0

2 ( )

2 ( )




















i r i r

i

m

r r

m

i

H e e J br rdr

H e e J br rdr

 

 





 (9) 

or equivalently 

 

 

2

2

3
2

2

2 8 4

2 2

1 1

2

0

2

4

4

2

8 8

i

i r

b m
i

i r

m

b

m

m

H

J

i

b

b b

e e

H e e

i J





 





 



 
   

 

 














 
 
 

    
     

 


  

 (10) 

Therefore, using Eqs. 8 and 10 in Eq. 7, the 

complex amplitude of the light field after the 

MFZG at a propagation distance of z can be 

written as follows: 

2
2

2

2

40

3

2
2

2 2
8

1 1

2 2

3

2
2

8

U( , , z)
2

( ) (1)
8

8 8

( ) (1)
8

ib
i

mp
m

imp

m

m

ib

mp mp

mp
m

imp

m

m

ib

m

h e i
e

b
i J e

b b
e J i J

b
i J e

e J













 





 

 



 





 
  
 

  

 

 
  
 

 

 


 

 

 
  
 




 


 
  

 

    
     

    

 
  

 







2 2

1 1

2 2
8 8

p mp

b b
i J

 
 

 

     
     

    

 (11) 

where 
2 r

b
z




  and c    . 
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Equation 11 describes the complex amplitude 

of the diffracted light from the MFZG at a 

propagation distance z.  

E. Near-field diffraction of a plane wave 

from an amplitude MFZG with a binary 

profile 

The transmission function through an 

amplitude MFZG with a binary profile in the 

polar coordinate system can be written as 

follows: 

   21
( , ) 1 sign cos cos

2
BT r cr p     

 

 (12) 

where c is the same as defined before, and r and 

 are the radial and azimuthal angle parameters 

specified on the grating's plane, respectively. 

The "sign" is the sign function, and is defined 

as follows: 

1 0

sign( ) 0 0

1 0

x

x x

x

 


 
 

 (13) 

 
Fig. 3. Presentation of an amplitude MFZG with 

binary transmission function and spoke number p=7 

and grating structure constant 20.5cms  . The 

actual size of the grating is 2
4 4cm  

Figure 3 shows the transmission function of a 

binary type of an MFZG. The transmission 

function of an amplitude MFZG with a binary 

profile can be written as a Fourier series. The 

Fourier coefficients will be as follows [8]: 

2c cos(p )

1

1
( , ) 1

2

i r

B t

t

T r A e





  
 




  


  



2

2 2

c cos(p )

-

1 1

c cos(p ) -c cos(p )

1
1 sin

2 2

i r

t

t t

i r i r

t
A e c

e e



 

 
  
 

 

      
   

  
      

  

  
  

 

 (14) 

By substituting Eq. 14 in Eq. 5, the complex 

amplitude of the light field after the grating at a 

propagation distance of z, we have: 





2

2

2

2

0

2
2 cos( )

0 0
1

2
( ) cos( ) 2 cos( )

0 0

1

2
( ) cos( ) 2 cos( )

0 0

U( , , z) e
2

e e sinc
2

e e e

sinc
2

e e e

i

i r i r

t

i c r i p i r

t

i c r i p i r

h

t
r dr d

dr d r

t

dr d r




   


    


    

 











 




  






   

 

 
  

 

 
  

 

 

 



 
 (15) 

Using the Jacobi-Anger expansion and Hankel 

transform, the complex amplitude of the light 

field at a propagation distance of z can be 

written as follows: 

2

2

2

4
0

2

t 1 m

3

2 22
8

+1 -1

2 2

2

t 1 m

U( , , z)

t
sinc ( ) (1)e

2

8 8 8

t
sinc ( ) (1)

2

8

ib

i

mp
m

i mp

m

ib

mp mp

mp
m

i mp

m

i
h e e

i J

b b b
e J i J

i J e

b

 







  






   





 





   

 



  

 
 

 




 



 
  

 

      
      

      

 
  

 

 
 
 

 

 

2
3

2 22
8

+1 -1

2 2

e .
8 8

ib

mp mp

b b
J i J



 




 


     

     
    



 (16) 

where, 
2 r

b
z




  and c    . 

The diffraction pattern on the screen is 

equivalent to the intensity distribution of the 

light field. Therefore, the intensity must be 

obtained. The intensity function is produced by 

multiplying the complex amplitude function of 
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the light field by its complex conjugate. We 

draw the intensity profile of the diffracted 

beam, which is obtained by multiplying the 

field in its complex conjugate as

I( , ) U( , ).U ( , )      , where * denotes 

the complex conjugate.  

III. EXPERIMENTS 

A. Experimental results of plane wave 

diffraction from amplitude MFZG with a 

sinusoidal profile 

Figure 4 shows a schematic of the setup for 

producing diffraction patterns. The light source 

used is the second harmonic of the Nd:YAG 

laser beam with diode pumping, which has a 

Gaussian transverse fundamental mode. A 

converging lens collimated the divergent laser 

beam, and its distance was adjusted so that the 

dimensions of the produced beam were more 

extensive than the dimensions of the grating 

until the grating was exposed to the central area 

of the beam. This will make the beam's 

wavefront assumed to be the wavefront of a 

plane wave. Near-field diffraction patterns were 

recorded using the digital camera sensor 

without using any lens (Nikon D7200) around 

the focusing light beam diffracted from the 

grating Diffraction patterns are recorded at 

three distances: before, near, and after the 

gratings' focal length, whose corresponding 

values are specified in the figures. We produced 

MFZGs by using the lithography method on 

transparent film. 

 
Fig. 4. Schematics of the experimental set-up for 

producing plane wave diffraction patterns from 

amplitude gratings. Lens 1 (microlens) and Lens 2 

are used together as a beam expander. 

In the following, analytical results and 

experimental results are compared. The results 

show that the analytical and experimental 

results are fully compatible. 

 
Fig. 5. Experimental recorded results (Green 

patterns) and analytical results (red patterns) for 

plane wave diffraction patterns from amplitude 

MFZG with sinusoidal profiles and spoke numbers 

p=3, 5, 10 at different distances of z=65, 130, 195cm 

from the gratings. The focal length of all gratings is 

considered f =130 cm. 

Figure 5 shows the experimental recorded and 

analytical results for plane wave diffraction 

patterns of a plane wave from different MFZGs 

with a sinusoidal profile. Diffraction patterns in 

the different columns were recorded at 

propagation distances of z=65cm, 130cm, and 

195cm for different gratings with the spoke 

numbers p=3, 5, and 10. The beam's 

wavelength used to create all the patterns is

532 nm,   and the focal length corresponding 

to the gratings is 130cm.f   Green and red 

patterns correspond to experimental and 

analytical results, respectively. The comparison 
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of the results shows the complete agreement of 

the analytical and experimental results. In the 

calculations, the dimensions of the gratings are 

considered the same as those in the 

experiments. 

 
Fig. 6. Experimental recorded results (Green 

patterns) and analytical results (red patterns) for 

plane wave diffraction patterns from amplitude 

MFZG with binary profiles and spoke numbers 

p=4, 7, 10 at different distances of 

z=110, 220, 330cm from the gratings. The focal 

length of all gratings is considered f=220 cm. 

Figure 6 shows the experimental recorded and 

analytical results for plane wave diffraction 

patterns of a plane wave from different MFZGs 

with a binary profile. Diffraction patterns in the 

various columns were recorded at propagation 

distances of z=110cm, 220cm, and 330cm for 

different gratings with the spoke numbers 

p=4, 7, and 10. The beam's wavelength used to 

record the experimental results was similar to 

the previous case, but the focal length 

considered for the gratings is 220cm.f   Again, 

the green and red patterns correspond to 

experimental and analytical results. 

IV. CONCLUSION 

The argument of MFZG is a combination of the 

term 2cr related to the phase of the Fresnel 

pattern and the term  cos p related to the 

radial structure; the term associated with the 

phase of the Fresnel pattern causes the beam's 

focus in a certain distance. Due to the presence 

of the radial term in the MFZG, plane wave 

diffraction has a pattern similar to the wave 

diffracted from an RG. By examining the 

experimental and analytical results, it can be 

seen that the diffraction pattern becomes 

focused at a certain distance. Also, by 

examining the experimental and analytical 

results, we see that the general shape of the 

diffraction pattern is more related to the phase 

of the Fresnel pattern. After and before the focal 

point, the diffraction pattern behaves similarly 

to the diffraction pattern of a Fresnel grating. 

Comparing the recorded experimental patterns 

and those obtained from the theoretical 

investigations drawn with the MATLAB 

program shows that the theoretical predictions 

agree with the experimental results. 

Similar to diffraction from other radial shapes, 

various applications can be considered due to 

the creation of a high-intensity alternating lobe 

on the target plane, including optical tweezers, 

optical manipulation, and beam shaping. 

Perhaps, in the future, the investigation of 

diffraction patterns from structures based on 

radial structures will create the basis for the 

construction of systems that act as transmitters-

receiver based on wavefront topology. This 

lookout opens a new goal to enter the new 

world, where the topology of the structures 

plays a vital role in transmitting information 

even without considering the wave nature. 
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