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ABSTRACT— This research addresses the 

complexities and inefficiencies encountered in 

fabricating fiber Bragg gratings (FBGs), which 

are crucial for applications in optical 

communications, lasers, and sensors. The core 

challenge lies in the intricate relationship 

between fabrication parameters and the FBG's 

physical properties, making optimization time-

consuming. To circumvent these obstacles, the 

study introduces an artificial intelligence-based 

approach, utilizing a neural network to predict 

FBG physical parameters from transmission 

spectra, thereby streamlining the fabrication 

process. The neural network demonstrated 

exceptional predictive accuracy, significantly 

reducing the parameter prediction time from 

days to seconds. This advancement offers a 

promising avenue for enhancing the efficiency 

and precision of FBG sensor design and 

fabrication. The research not only showcases the 

potential of artificial intelligence in 

revolutionizing FBG production but also 

contributes to the broader field of optical 

technology by facilitating more rapid and 

informed design decisions, ultimately paving the 

way for developing more sophisticated and 

sensitive FBG-based applications. 

KEYWORDS: Fiber Bragg Gratings, Optical 

Fiber, Deep Learning, Neural Network, 

Artificial Intelligence. 

I. INTRODUCTION 

A fiber Bragg grating (FBG) is a short section 

of optical fiber, typically ranging from a few 

millimeters to a few centimeters, where the 

refractive index of the core region is 

periodically modulated on a sub-wavelength 

scale [1, 2]. FBGs have found wide applications 

in various fields, including optical 

communication systems as filters [3], lasers as 

cavity mirrors [4, 5], temperature [6], strain [7], 

and pressure [8] sensors with high sensitivity 

[9]. The typical transmission spectrum of an 

FBG is depicted in Fig.1. Three significant 

aspects are observed in the figure: firstly, the 

maximum reflectivity at the wavelength of 

1550 nm; secondly, the Full-Width Half-

Maximum (FWHM) where the FBG acts as a 

strong reflector; and thirdly, the series of 

distinct, narrow peaks known as Strength of 

sidelobe peaks. These elements are influenced 

by specific physical parameters of the FBG, 

such as its length, amplitude modulation index, 

apodization type, and period. The values of 

these parameters, in turn, depend on the 

fabrication process of the FBG, including 

factors such as laser pulse intensity, number of 

laser pulses, and fiber composition, referred to 

as fabrication parameters. In sensing 

applications, the objective is to generate slow-

light peaks as narrow and strong as possible, 

necessitating the optimization of the fabrication 

parameters [2, 10]. However, this study faces 

several challenges. Firstly, the relationship 

between the fabrication and resulting physical 

parameters is poorly understood, often leading 

to a trial-and-error approach in determining the 

fabrication parameter values for FBG 

fabrication. Secondly, calculating the physical 

parameters from the measured transmission 

spectrum is non-trivial. 
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Fig. 1. The plan of the FBG structure and NN architecture for prediction of output parameters. An NN architecture 

was employed to predict the features of the FBG based on the design parameters. 

A real-coded genetic algorithm was proposed 

for this calculation in [11, 12], while a Markov 

decision process was employed for optimizing 

similar structures [13]. Conversely, predicting 

the transmission spectrum from the physical 

parameter values is relatively straightforward 

using existing analytical methods, such as the 

Transfer Matrix Method (TMM) based on 

electromagnetic theory, which solves for the 

amplitudes of transmitted and reflected electric 

fields [14]. As a result, scientists, including 

many graduate students, frequently resort to the 

latter approach, spending days adjusting the 

physical parameter values until the calculated 

spectrum matches the measured spectrum. 

Unfortunately, the use of numerical solvers in 

simulations can be quite time-consuming and 

computationally expensive. This can be 

especially problematic in situations where real-

time processing is necessary, such as with 

biosensors. The rapid progress of Artificial 

Intelligence (AI) has propelled Deep Learning 

(DL) to the forefront, recognizing it as an 

innovative technique to overcome current 

obstacles [15]. DL differs from traditional 

Machine Learning methods by exploiting the 

complex multilayer design of neural networks 

(NNs) to extract attributes at different scales 

and depths. This strategy notably enhances 

precision and efficiency in regression analyses. 

Consequently, there has been a surge in the 

implementation of DL across photonics fields 

[16]. 

This project introduces an NN that learns the 

correspondence between a transmission 

spectrum and its associated physical parameters 

to overcome the time-consuming fitting 

process. The network takes the features of the 

transmission spectrum as input and outputs a 

vector of predicted parameter values. This 

approach significantly reduces the time 

required to predict the physical parameters for 

a given spectrum, reducing it from days to 

seconds. This acceleration enhances research 

efforts to develop more advanced and highly 

sensitive FBG sensors. 

II. THEORY AND MODELING 

In this study, coupled mode theory is employed 

to analyze coupled-mode structures, while the 

TMM is utilized to solve the coupled mode 

equations. Light incident on an FBG is 

efficiently reflected when it satisfies the Bragg 

condition [17]: 

2  B effn , (1) 

where λB represents the Bragg wavelength, neff 

is the effective refractive index, and Λ denotes 

the grating period. The refractive index 

distribution n(z) depicted in Fig. 1 can be 

expressed as follows [18]: 

   

        
0

cos 2 / ,

dc

ac

n z n n z

A z n z z z 

   

  
 (2) 

where n0 represents the average refractive index 

change of the fiber core, A(z) is the apodization 

function, ∆nac represents the maximum index 

variation, ∆ndc is the average change in 
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refractive index, and θ denotes the period chirp. 

By applying the coupled mode theory, the 

reflectivity of a grating can be described as [18, 

19]: 

 
 

   

2 2

2 2 2 2

sinh
,

sinh cosh

sL
R L

sL s sL






 

, (3) 

where R(L, λ) represents the reflectivity, L is the 

length of the grating, κ denotes the coupling 

constant, Δβ represents the detuning wave 

vector, and s is defined as s=(κ2-Δβ2)1/2. In a 

chirped FBG, the grating period varies along 

the length of the grating. The chirp coefficient 

influences the period as follows: 

   period / 2 period / 2      , (4) 

where α represents the chirp coefficient, and z 

varies between 0 and L. In this study, the 

following apodization functions are utilized for 

the design and simulation of an FBG [19]: 

Uniform: 

  1
2 2

L L
A z z    , (5) 

Cosine: 

  cos
2 2

z L L
A z z

L

 
    

 
, (6) 

Raised-Cosine: 

  2cos
2 2

z L L
A z z

L

 
    

 
, (7) 

Tanh: 

 
 

tanh 1 2

tanh 2 2

z

L L L
A z z







   

   
   
   

, (8) 

Here, the parameter η can be adjusted to modify 

the sharpness of the apodization profile. Figure 

2 illustrates these apodization functions. In 

optical design, an apodization function is 

carefully designed and can be pretty intricate 

and tailored to meet specific system 

requirements and characteristics. 

 
Fig. 2. The illustration of apodization functions. In 

optical design terminology, an apodization function 

refers to the intentional modification of an optical 

system's input intensity profile. This function may be 

complex and carefully created to customize the 

system to specific characteristics. 

III. METHOD OF DL IMPLEMENTATION 

The primary objective of this research is to 

utilize a vector containing the normalized 

physical parameters of an FBG as input to 

generate a corresponding measured 

transmission spectrum (refer to Fig. 1). Several 

encoding methods can be considered for the 

input data: 

1. Image representation: Using an image of 

the transmission spectrum, although 

feasible, presents challenges. To accurately 

capture the number, height, and width of 

the numerous slow-light peaks on the left 

edge of the spectrum, high-resolution 

images of at least 1080 × 1080 or larger 

would be required. However, processing 

such images can significantly slow down 

data processing, and encoding the image 

can result in information loss. Therefore, 

this method is not the most accurate for 

representing the data. 

2. Vectorization of the spectrum: Another 

approach is to vectorize the transmission 

spectrum as (x1(i), x2(i)), where x1(i) 

represents a vector of wavelengths ranging 

from 1550 nm to 1560 nm, and x2(i) 

represents a vector of the corresponding 

transmitted power T at those wavelengths. 

However, this method leads to significant 
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and cumbersome weight matrices, 

challenging training and storage. 

3. Parameterization of the input data: The 

preferred approach is to parameterize the 

input data. 

It is important to note that the spectra are highly 

dependent on the parameter values and must be 

carefully encoded to enable accurate 

predictions by the NN. The provided formulas 

establish the relationship between these inputs 

and the desired outputs. In the next section, we 

will present the correlation of these parameters 

in more detail, including simulation 

justifications. Furthermore, since there is no 

publicly available dataset for this problem, we 

generated our dataset in-house. We trained the 

NN using standardized FBG design parameters, 

resulting in a normalized spectrum consisting of 

30 data points. The thorough investigation 

carried out in this work generated a 

comprehensive training dataset consisting of 

1.5×104 unique samples, each of which was 

carefully produced through rigorous Finite-

Difference Time-Domain (FDTD) simulations. 

The total number of samples was divided into 

training, validation, and test datasets, with a 

ratio of 70% for training, 15% for validation, 

and 15% for testing. The training process 

employed a batch size of 40 and continued until 

improvements in the validation loss stopped, 

with updates based on gradients computed from 

the training loss. The data figures shown in this 

paper were drawn exclusively from the 

validation set and were not used during the 

actual training phase. The model's capacity to 

generalize to new, unseen data depended 

critically on the appropriate selection of 

hyperparameters, such as batch size, number of 

training iterations, and the learning rate. 

Throughout the 250 training epochs, a constant 

learning rate of 0.05 was maintained. 

The NN architecture employed in this study 

consisted of three fully connected dense layers. 

This NN identifies complex relationships 

between input parameters and the resulting 

transmission spectrum, giving a more 

comprehensive understanding of the FBG's 

behavior and performance. The hidden units of 

these layers were set to 25, 50, and 25, 

respectively, as illustrated in Fig. 1 (In this 

figure, each node represents five neurons). 

ReLU activation was utilized in the initial 

layers, while the last layer employed a sigmoid 

activation function to ensure output values were 

constrained within the range of 0 and 1. 

The mean squared error (MSE) was selected as 

the loss metric for evaluating the network's 

performance and optimizing the weights. The 

MSE measures the average squared difference 

between the predicted and actual values, as 

depicted by the specified MSE function. 

 
2

1

1
MSE

n

pred true

i

y y
n 

  , (9) 

where n denotes the total number of data points, 

ypred is the predicted value, and ytrue represents 

the actual value computed utilizing the FDTD 

method. 

The Adam optimizer was employed in this 

study, utilizing the default parameters 

introduced in the original publication [20]. The 

NN implementation was facilitated using the 

Keras library [21], a Python-based DL library 

that operates on top of TensorFlow [22], an 

open-source Python library. Keras and 

Tensorflow were chosen due to their convenient 

helper functions, which greatly simplified and 

expedited the development of this DL 

approach. 

IV. RESULTS AND DISCUSSION 

The parameters used for simulation are shown 

in Table 1. Based on the described model and 

some significant practical considerations that 

should be considered when designing an FBG, 

we investigate the effects of input parameters 

on the outputs in the following subsections. 

Table 1. The parameters used in the simulation. 

Parameter Quantity 

Free space wavelength, (nm) 1550 

Period, (μm) 0.5 

Modulation depth 0.0003 

Cladding index 1.45 

Waveguide width and height (μm) 5.25 
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A. Index Difference 

An increase in index difference causes an 

increase in reflectivity, bandwidth, and sidelobe 

strength, so this increase is not the same at 

different lengths. The reflectivity, bandwidth, 

and sidelobe strength variation are calculated 

when the index difference varies from 0.01 to 

0.1 and 0.1 to 0.2. This result demonstrates that 

the increase of undesirable characteristics, such 

as sidelobe strength, is greater than desirable 

characteristics, such as reflectivity, when the 

index difference varies from 0.1 to 0.2. 

Therefore, index differences greater than 0.1 

are not suitable. The increase in sidelobe 

strength is remarkable and, therefore, must be 

reduced. In the next section, we will examine 

methods of reducing sidelobe strength. 

B. Apodization 

Apodization is a technique that reduces the 

sidelobe strength. The functions that have been 

used in apodization are as follows: Cosine, 

Raised-Cosine, and Tanh. These functions will 

be applied to the FBG and evaluated in this 

section. Figure 3a illustrates how the 

apodization process decreases the reflectivity. 

It is observed that the reflectivity increases with 

an increase in grating length and reaches 100% 

at the approximate length of 15mm for the case 

of uniform FBG, 25mm for Cosine apodized 

FBG, and 30mm for both Raised-Cosine and 

Tanh apodized FBG. Figure 3a also shows that 

the Raised-Cosine and Tanh-applied FBG 

reflectivities are the same, and the Cosine 

profile has the highest reflectivity. 

Sidelobe strength reduction is the main effect of 

applying apodization. This reduction depends 

on apodization profiles and is different at 

various lengths. The relationship between 

apodized FBG Sidelobe strength and grating 

length has been illustrated in Fig. 3b. Nonlinear 

changes in the Sidelobe strength with 

increasing grating length can be observed in 

Fig. 3b. As can be seen in this figure, the 

Raised-Cosine profile has the lowest Sidelobe 

strength. The selection of an appropriate 

bandwidth depends on the applications. The 

wider bandwidth is a key parameter for 

uncooled pump laser applications. Also, the 

FBGs with wider bandwidths are required in the 

FBG stabilizer design [23] and ultrasonic 

detectors [24]. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. (a) shows that the reflectivity of apodized 

FBGs increases with grating length. The cosine 

profile has the highest reflectivity. (b) shows that the 

Raised-Cosine profile has the lowest sidelobe 

strength. (c) shows that the Raised-Cosine profile has 

the highest bandwidth. 

In the sensing applications, The FBGs have 

better resolution with narrower bandwidth and 

can achieve higher measurement speed [18]. 

However, the optical signal-to-noise ratio of the 

long-distance point sensing system decreases 
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gradually when the bandwidth of the FBG 

increases. Fig. 3c demonstrates that applying 

apodization can change the bandwidth. As is 

observed from Fig. 3©, the Raised-Cosine 

profile provides the highest bandwidth among 

the simulated apodized profiles. 

C. Deep Learning Technique 

As anticipated, the training loss decreased as 

the number of epochs increased, as illustrated in 

Fig. 4. The training loss rapidly converged to a 

low value of 0.055 after 250 epochs. Notably, 

the error on the validation set closely aligned 

with the training set, which was expected since 

they originated from the same distribution. This 

indicates that the network did not overfit the 

training data. Expanding the width or size of the 

network did not yield significant improvements 

in performance.  

 
Fig. 4. The graph displays the NN's ability to 

estimate the spectrum. It shows the training loss, 

which indicates significant decreases. This drop 

suggests that the NN can recognize patterns in the 

data. 

This observation suggests that enhancements 

may be required in the training dataset size 

and/or the encoding of input features. Given the 

relatively small dataset, iterating through the 

entire dataset per epoch did not impose a 

significant time burden. Thus, the batch size 

was maintained equal to the number of training 

samples. However, it may be necessary to 

reduce the batch size in future endeavors 

involving larger datasets. Table 2 presents two 

examples from the test set, demonstrating 

instances where the ground truth and predicted 

parameter values exhibit an excellent match. 

The term “ground truth” refers to the known or 

accepted data used as a benchmark or reference 

point for training and evaluating machine 

learning models. 

Table 2. DL's predicted characteristics of FBG 

compared to its actual characteristics. 

FBG 
Reflectivity 

(%) 

Sidelobe 

strength (%) 

Bandwidth 

(nm) 

 FDTD DL FDTD DL FDTD DL 

Uniform 100 100 75.10 75.15 0.30 0.29 

Cosine 100 100 0.40 0.42 0.30 0.29 

Raised-

Cosine 
100 100 0.00 0.00 0.30 0.27 

Tanh  100 100 0.91 0.90 0.25 0.28 

 

It represents the true or definitive information 

about a dataset, essential for supervised 

learning tasks where the model aims to predict 

or classify the target variable accurately. The 

strong correspondence between the values 

further confirms the approach's effectiveness in 

learning the relationship between the input and 

output.  We recognize that dedicating additional 

efforts to refining this approach can yield even 

more remarkable results. Nonetheless, the 

primary objective of this research is to 

showcase the potential of AI in predicting 

desired parameters for FBG designers. Using 

approaches that automatically identify spectral 

features, such as long short-term memory 

(LSTM), as opposed to manually engineering 

features as done in this study, may potentially 

enhance performance in such cases. These 

aspects can be further investigated and explored 

in future research endeavors, providing 

opportunities to expand upon the findings and 

delve deeper into the subject matter. 

D. Study Limitations 

As we approach the conclusion of this work, it 

is only fair that we critically scrutinize these 

achievements. Although the NN developed in 

this study effectively predicts the transmission 

spectra for various types of FBGs, such as 

uniform, apodized, and linearly chirped 

designs, it currently does not extend to specific 

specialized FBG structures. Specifically, the 

model lacks training for highly complex 

configurations like tilted FBGs or nonlinearly 

chirped FBGs, which require advanced 
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fabrication techniques. This limitation arises 

from two main factors: First, these specialized 

FBG types represent only a tiny portion of FBG 

devices used in practical applications. Second, 

accurate modeling these complex structures 

would necessitate a considerable increase in the 

number of input parameters for the NN, thereby 

requiring a significantly larger training dataset 

that is not currently available. Nonetheless, we 

acknowledge the need to enhance the proposed 

model's generalization capabilities continually. 

With access to more computational resources 

and a more extensive FBG structural dataset, 

future research could aim to incorporate the 

parameters needed to predict the transmission 

spectra of tilted and nonlinearly chirped FBGs. 

This would enable the NN to offer a 

comprehensive solution for modeling FBG 

devices, thereby broadening its practical 

applicability to a broader array of photonic 

technologies. 

V. CONCLUSION 

This study has leveraged the power of deep 

learning (DL) to establish a strong correlation 

between the transmission spectrum 

characteristics of fiber Bragg gratings (FBGs) 

and their operational effectiveness. Our 

research has demonstrated the ability of DL 

techniques to navigate the complexities of 

inverse design, significantly enhancing the 

capabilities of FBGs. The neural network (NN) 

models developed as part of this work have 

rapidly converged and provided detailed 

predictions of the spectral features for various 

FBG spatial configurations. 

Notably, the NN models have shown the 

remarkable ability to closely align the predicted 

transmission spectra with those obtained from 

rigorous finite-difference time-domain (FDTD) 

simulations, highlighting the exceptional 

precision of our deep learning approach. This 

method has substantially reduced the 

computational demands compared to traditional 

numerical solvers, enabling swift and cost-

effective spectral predictions for FBGs. 

Furthermore, our methodology has successfully 

overcome the longstanding challenge of inverse 

design, empowering the creation of optimal 

FBG geometries that produce the desired 

optical response spectra. 

The validation of our DL model has been based 

on spectra from physically realizable FBG 

configurations, underscoring the potential for 

integrating NN-enabled FBGs into optical 

communications systems. This validation 

emphasizes the practical significance of our 

findings, demonstrating their applicability 

across real-world contexts, including all-optical 

signal processing and communication. 

The combination of the precision of 

nanotechnology and the computational power 

and pattern recognition capabilities of artificial 

intelligence is ushering in a new era of scientific 

innovation. This convergence promises to 

unleash groundbreaking discoveries and drive 

innovative applications, marking a 

transformative shift in scientific exploration 

with the potential to revolutionize numerous 

fields, including the design and fabrication of 

FBG-based sensors and devices. 
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