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Abstract- We proposed and analyzed
implementation of the single-qutrit quantum
gates based on stimulated Raman adiabatic
passage (STIRAP) between magnetic sublevels
in atoms coupled by pulsed laser fields. This
technique requires only the control of the
relative phase of the driving fields but do not
involve any dynamical or geometrical phases,
which make it independent of the other
interaction details: detuning and pulse shapes,
areas and durations. The suggested techniques
are immune to spontaneous emission since the
qubit and qutrit manipulation proceeds through
non-absorbing dark states. In this paper, taking
proper timing of the Rabi frequencies allows us
to transfer the population of the system to a
desired superposition of the ground states with
the highest fidelity. We also obtained and
implemented single-qutrit unitary gates, for
transferring of the population of the system
with different initial and final states.

KEYwoORDs: STIRAP, Quantum  gate,
Adiabatic passage, Tripod, Geometric phases.

l. INTRODUCTION

Quantum information processing requires the
construction of specific quantum gates in a
controllable way [1]. The growing interest in
guantum computation stimulates the search for
schemes to prepare and manipulate quantum
states [2]. The physical implementation of the
quantum computer is based on qubits quantum
systems, which like the classical logical bits,
have two states: 19 and [ written in Dirac

notation and known as computational basis
states. Qutrits represent a very promising
alternative to qubits for quantum information
processing, because of their greater capability
to encode and store more information [3, 4].
This reduces significantly the number of
particles that need to be stored and
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manipulated for quantum computing. The most
natural physical candidate for representing a
qutrit is the degenerate substates of an atomic
energy level. It is therefore important to
describe and analyze the dynamics of a
quantum system which has an three degenerate
ground level consisting of thel2/2)3), forming

the qutrit, coupled to one excited state, [4)[5].

A quantum gate is a unitary operator acting on
the states of a certain set of qubits. If the
number of such qubits is to be n, the quantum
gate is represented by a 2"x2" matrix in the
unitary group u¢n)[6]. Therefore the quantum

single-qutrit gate is represented by a 3x3
matrix in the unitary group y).

The technique of stimulated Raman adiabatic
passage (STIRAP) uses the coherence of two
pulsed laser fields to achieve a complete
population transfer from an initially populated
ground state to a target ground state via an
intermediate excited state [7]. In this
configuration one assumes that the ground
states are metastable, i.e., with negligible
spontaneous emission in the considered time
scale. The exited state has a relatively short
lifetime of spontaneous emission. Instead of
applying the pulses in the intuitive sequence,
where the pump pulse (linking the initial
populated ground state and the excited state)
precedes the Stokes pulse (linking the excited
state and the initially unpopulated ground
state), the Stokes pulse precedes the pump
pulse (as the so called counterintuitive pulse
ordering). If the condition of two-photon
resonance is satisfied, if there is sufficient
overlap of the two pulse, and if the pulses are
sufficiently strong such that the time evolution
is adiabatic, then the complete population


https://mail.ijop.ir/article-1-44-en.html

[ Downloaded from mail.ijop.ir on 2026-02-07 ]

R. Nader-Ali et al.

transfer occurs between the ground states,
without populating the intermediate excited
state.

The tripod STIRAP technique, first proposed
by Unanyan et al. [8,9], is an extension of
STIRAP in which a third laser pulse (the
control) couples the excited state to a fourth
ground state. For a proper sequence of pump,
Stokes, and control pulses, tripod STIRAP
allows to create not only a coherent
superposition of ground states, but also to
construct coherently single-qutrit gates in the
subspace of three ground states. In this paper,
we use STIRAP technique for implementation
of single—qutrit quantum gates. We propose a
robust scheme that allows one to design
quantum gates based on non-Abelian
geometric phases without fragile dynamical

phase. Finally we present the numeric
corresponding to our schemes.
1. CONSTRUCTION OF THE

EFFECTIVE HAMILTONIAN

The linkage pattern of the tripod system is
shown in Fig 1. The Hamiltonian of this
system in the rotating-wave approximation can
be written as (with 7 =1):

0 0 0 Q, (e (1)
e 0 0 0 Q,(t)e
0 0 0 Q, (1) e
Qe Q,ne’ ) Qe @,

where, the energy of the ground states 12),[2),|3)
is taken as zero, “A(1)=-u&(1),1=123 gre the
Rabi frequencies of the laser pulses, and o, 6,

are the carrier frequency and the initial phases
of the laser pulses, respectively.

i B 3

Fig. 1 Linkage pattern of the system.
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In the resonant case, w, =, the effective

Hamiltonian of the system is obtained by
applying the unitary transformation on H,

eff _ D+ i +@
H® () =R"HR-IR" =
0 0 0 Q)
2
Hemol O 0 0 QO (2)
2| 0 0 0 Q)

QM @) Q) 0

where the unitary transformation matrix Rr(t) is
defined as:

1 0 0 0

0 e i@-0) 0 0 3
R(t) = —i(6,-0,) ( )

0 0 e TR 0

0 0 0 efi((utJrHl)

The corresponding dynamics of H®(t)is given
by ig\CD(t)>: He" (0) D (t)) - The relation between
ot

the state vector |y corresponding to H(t),
and the state vector \cp(t»corresponding to
H°"(t) can be established as:

¥ (1)) = RO)| (1)) (4)

I1l. CONSTRUCTION OF THE
ADIABATIC HAMILTONIAN
The next step of the analysis is to find the

degenerate dark states (with null eigenvalues
E,=E,=0 and zero components along the

excited state 14) of the effective Hamiltonian).
In general, the N-pod systems have (N-1)

dark states and 2 bright states. The dark states
are:

Q(t)o(t)
jjz((f)) %(0)2() ©)
e Q1))
|oy(t))=| - ]0(0) =] 1(t)xs(t)
XZ(t) Xz(t)
X l0

and the bright states corresponding to non-zero
eigenvalues g, =+ ,/2,E, =—4,/2 are:
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Q) Q(t)

*/EXS('[) \/Exg(t)

Q,(t) Q,(t) (6)
|os(t)) = V215(t) ()= V2y,(t)

Q) Q,(t)

Vo, (t) V2y4(t)

1
= *

Where,lnz:ZQiz. To simplify, we can define
i=1

new parameters, as:

tang =8 o1 (7
Zi

The angle g is the mixing angle used in
standard STIRAP related to the pump ,o,, and
the Stokes ,q,, pulses and g, is additional
mixing angle related to the control pulse, q,.
The unitary transformation between the atomic
bare states {1)]2),/3)/4)) and the adiabatic states
{4)]4.)8))4.) }» Which diagonalizes the effective
Hamiltonian, is:

. . 1 1
sing  cosgsing, —=cosgcosy, —=cosY cosY,
V2 2 (8)

—c0s9, singsing, isin&lcos&Z isinl‘)lcosg2

- 7 7

0 —C0s9, isin 9, —_—

V2 V2
1 1
V2 V2

The other form of transformation Eq. (8), in

terms of Rabi frequencies, can be written as:

sing,

0 0

0, 0, 19 10
X Xoxs N2 x5 N2z 9
Cxo 90, 190, 10, ©)
T(t) = X2 X2X3 V2 X3 V2 X3
® 10, 10
0 _ X2 4 23 2 2
X3 \/57(3 \/57(3
1 1
0 0 LT
V2 V2

Hence, the Hamiltonian in the basis of
adiabatic states can be written as:

Hr=T+HsffT —T+g
ot

0 —igsing, _T;Ql cosd, _T;.S'Il cos9, (10)
i iglsinsz o ﬁ 3 %;92
%91 cosd, 7$92 7%;(3 0
%91 cos9, —%{92 0 e 7
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The dynamics corresponding to H'(t) IS given
(1)) The relation between

0

by |a\<b’(t)>:H’(t)
o), the state vector corresponding toH*' (1),
and  |op)is established by the unitary
transformation 1) as:

(1) (11)

In the adiabatic limit, which we have assumed
to be applicable, the time derivative of the
mixing anglesg,, and g,is small compared to
the splitting of the eigenvalues given by ,, /2
(see Fig. 2). Under this condition, there is
negligible non-adiabatic coupling of the
adiabatic states, |o (1)) OF|a,(1), With the states

of o) and |o, )

|o(t) =T (t)

H,, (LIT)

Q06
© 04t
T

0.2

0 . . . L . . .
5 -4 3 2 -1 0 1 2 3 4 5

Time (units of T

(b)

Fig. 2 Comparison of the H' elements. There is a
negligible nonadiabatic coupling of the adiabatic

states, |@.0)) or‘qu(t», to the |Ps®)ang 1®:0)
states.

Therefore, in the adiabatic limit we must take
into account only transitions between
degenerate adiabatic dark states. This leads to:

0 —igsing, 0 0
i gsind, 0 0 0 (12)
r_ 1
H'=| ¢ 0 —54 0
1
0 0 +E;(3
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V. TiIME EvoOLUTION OPERATOR IN
THE ADIABATIC LIMIT

In the adiabatic limit, the time evolution

operator corresponding to H (t) can be written

as:

—inad(s)ds
U™(tt)=e © (13)
Since H*has a block-diagonal structure,
uwill be as:
Uad(t t ) (U 0 ] (148.)
0 u
U, :[C?S}/ —siny} (14.b)
siny cosy
U, :[e""‘“) 0 j (14.c)
O e+|()(l)

where, u,,u, are the dynamical and the

geometrical blocks, respectively, and the
dynamical and the geometrical phases, »(t)and

o(t) are respectively defined as:

(1) = jgl(s)sin 9,(s)ds (15a)
1 t
5= tj ds 7,(s) (15b)
and u* (t,t,)can be written as:
cosy(t) —siny(t) O 0
ad siny(t) cosy(t) 0 0 (16)
U (t,t)= -
0 0 e®v
0 0 0 ™o

Considering, Egs. (4), (10), (11), (13), we can
write the state vector corresponding to H (t) as:

WD) =ROTOU (1) T 1) R"¢) ¥ () (17)

This means that the time evolution operator
corresponding to H t) in adiabatic limit is:

U(tt) = ROTOU* L) T ¢)R ¢) (18)
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V. COHERENT POPULATION
TRANSFER TO A SUPERPOSITION OF

GROUND STATES
In this section, we divided our studies into
three cases, with same initial state and

different final at the end of the

interaction.

states,

A. Case 1

In this case, the goal is to transform the initial
state of the system:

[W()) =1 = (;0;0;0) (19.a)

at the end of interaction, into a ground state.

() =13) = (0;0:1;0) (19.b)
Using Rabi frequencies of the fields as:
L Q 20.a
i 0. (] >0 2) (20.2)
Q,
fin ' 0. (2 7[0u]>[0) (20.b)
.g,—\407
25w A
3° 0
EL v
== 4t .
e 5 4 5
2 1
2 .|1> =) X f|3>
%0.5
8‘0 : ||2> |I3 i4 PfH_PfI')_PHA_O
e 5 -4 5
1 T T T T '
%05 ’ b
= 0 T T T T T L L L L |

&
EN
&
)

o 1 2 3 4 5
Time (units of T)

Fig. 3 (a) Rabi frequencies of the laser fields with
the Gaussian pulse parameters of ¢ —a40/T,
7=2T, (b) time evolution of the populations, and

(c) dynamics of the fidelity of desired state (in case
1).

We have tried to transfer the initial population
of the system, finally, to the desired state. By
substituting, Egs. (20) into Eqg. (9), we will
have:
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1 0 0 0
1 1
I 21.
) 70 0 5 5 (21.9)
(t;)= :
0 -1 0 0
1 1
R N
1 1
0 0 —— —
V2o 2 (21.b)
-1 0 0 0
T)=lg 4 o o
1 1
RN 23

And substituting Egs. (3), (16) and (21) into
Eq. (18) gives:

U(tf 'ti) =
0 cosse @A 0 —isiné (22)
cosye@-%) 0 siny e 0
sinye"@ % 0 cosy 0
0 —isino 0 c0so
Assuming,
0,=0,0,=0,=x (23)

Substituting Eg. (22) into Eg. (21) and
applying the initial state of the system, |y,

in Eq. (17) gives:
() =U(t, 1)) =0 cosy siny Of (24)

As it can be seen from Fig. 4, with 7 =7/2 and,
coss =-1, the final state of the system at the
end of the interaction transfer to:

w(t,))=[3)=0 0 1 of (25)

‘i’ime (units of T)
Fig. 4 Geometrical phase (upper curve) and real
part of exp(-is) (lower curve) for case 1, (Eq. (15).)

For a numerical analysis of the coherent
population transfer to the desired state, we
have assumed the Gaussian time-dependence
of the Rabi frequencies, which are satisfied
conditions of Egs. (20) and (23), as:
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Q,(t) = Qe lt-F (26.3)
Q, (t) =—Qe [T (26.0)
O,(t) =—Que ¥ (26.c)

where, ©.27,T are the peak Rabi frequency,
the time delay between the pump and Stokes
pulses and the pulse duration, respectively.
The results are shown in Fig. 3. In Fig. 3.a, it
is shown that the conditions of Egs. (19) and
(23) are satisfied with the Gussian pulse

parameters of Q| =[Q0|=[Qx =40/T gnd 7=2T

The time evaluation of the system populations
is shown in Fig. 3.b, which represents a
coherent superposition of ground states with
final equal populations. The technique of
adiabatic passage is also expected to be robust
against the effects of the spontaneous

emission, so, the excited atomic state |4 is not
populated in the adiabatic limit, in the all three
cases studied here (this effect is denoted in

Figures. 3.b, 5.b, and 7.b as Pi9=0 The
fidelity of the populations in different levels as
a function of the time is shown in Fig. 3.c. It
can be seen from Fig. 3.c that at t>1 fidelity

of desired state at Eq. (24) is equal to one
(9%100).

SIS
S o S 8
L >

Rabi Frequencies
(units of 1/T)
% ()
Fod |
w:O

5 4 3 2 1 [)
1 ) S
g Fim=1 >( P, =P, 1,=0.50
<05 112 £13;
>
g, PipPin=Pi =0 : PPy 0
0

fidelity

-

&
IS
&
o
o
r
©
IS
o

;Fime (units of T)
Fig. 5 (a) Rabi frequencies of the laser fields with
the Gaussian pulse parameters of ¢ —40/T,

r=2T. (b) Time evolution of the populations,

which represents a coherent superposition of the
ground states with final equal populations. (c)
Dynamics of the fidelity of desired state (in case 2.)
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B. Case 2

Another interesting case, that can be studied, is
to transform the initial state of the system,

w(t)=[y=@a 0 o o), (27.9)

At the end of interaction, into a coherent
superposition of other two ground states as:

1
\\P(tf)>:fq2>+\3>) (27.b)
Using Rabi frequencies of the fields as:
im0, (2/=o>2) (28.2)
o (0,000, (28b)
Substituting, Eqgs. (28) into Eq. (9) gives:
1 0 0 0
1 1 1
% 2 2 (29.a)
Tt)=, 1 1 11}
22 2
1 1
NI
1 1
0o 0 = =
V2 2 (29.b)
10 0 0
T(tf):
0 -1 0 0
1 1
° 0 r %
: 0.4+ |
2 o02r i
> 0 |
-1.5 -1 -0.5 o] 0.5 1 1.5

-3
e
4 o -

-4 -2 (o] 2 4
Time (units of T)

Fig. 6 Geometrical phase (upper curve) and real
part of ©P(-19) (lower curve) for case 2, (Eq.

(15)).

Then, substituting Egs. (3), (16) and (29) into
Eqg. (18) gives:
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Ut .t) =

0 2 cossei@®  Loossei@® ising (30)
V2 V2
—cosye"@e) %siny sinye@%) 0
—sinye™ @ —%cosw*‘“’f‘é) cosy 0
0 —%sin& —%sino‘ L)

Finally, by substituting Eqg. (23) into Eq. (30),
and the initial state of the system, Eq. (27a),
into Eq. (17), the vector of state is become:
[W(t)) =V, 1) ¥@)=(0 cosy siny of (31)
As it can be seen from Fig. 6, with » =7/4 and,

coss=-1 the final state of the system, at the

end of the interaction, is transferred to:
1 r

\l{f(tf)yﬁ(o 110)

For a numerical analysis of the coherent

population transferring of the system to the

desired state, we have assumed the Gaussian

time-dependence of the Rabi frequencies,

which are satisfied condition of Egs. (28) and

(23), as:

(32)

(33.2)
(33.b)

0,0 =0 T
O, (1) = O, (1) = Qe 1T

The results are shown in Fig. 5. It is shown in
Fig. 5.a that the conditions of Egs. (27) and
(23) are satisfied with the Gussian pulse
parameters of [@ul=[Q|=[x[=40/T gnq r=2T
The time evaluations of the system populations
are shown in Fig. 5.b, which represents a
coherent superposition of the ground states
with final equal populations. The fidelity of
the populations in different levels as functions
of time is shown in Fig. 5.c. It can be seen

from Fig. 5.c that at 't fidelity of desired
state at Eq. (31) is equal to one (%100).

C. Case 3

The other interesting case that can be studied
is to transform the initial state of the system:

() =[1) (34.a)
at the end of interaction, into a coherent
superposition of other two ground states as:

(34.b)

[wt)) == (0+2)+]3)

e
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=]
8
T

(units of 1/T)
>

Rabi Frequencies

f m:Pv ‘2>=Pv ‘3>=0.33 1

Populations

.o

1

r T T T T T
208

© 06

=]

S04

0.2 I I I I I I I I I
5 - K

Time (units of T)
Fig. 7 (a) Rabi frequencies of the laser fields with
the Gaussian pulse parameters of ¢ —120/T,
Q,, =150/T, Q,=120/T, and 7=2T, (b) time
evolution of the populations, which represents a
coherent superposition of the ground states with
final equal populations, and (c) dynamics of the
fidelity of desired state (in case 3).

Using Rabi frequencies of the fields as:

im0, (1] > = ) (35.a)

tof; ‘Qz‘

quwE—z‘ao, (@ =], >j2y)) (35.b)

The unitary transformation, T(t), at the initial

and final times of the interaction, can be found
by replacing Egs. (35) into Eq. (9) as:

V2 yYJ2ooo 0

T YNZ 1Nz 0o (36.2)
Yo 0 YV2 12
0 0 -Yv2 V2
V2 0o 12 12
T -2 0 y2  y2 (36.b)
(tf)=
0 -1 0 0
0o o0 -1Yv2 Y2
ST e

Fig. 8 Geometrical phase for case 3 (Eq. (15a)).

45

Vol. 4, No. 1, Winter-Spring 2010

And, by substituting Egs. (3), (16), and (36)
into Eq. (18), the time evaluation operator can
be found as:

%(cos;f—siny) 1 (cosy +siny)e %4

V2

1 iny)etia-e) 1 i
——(CoSy —siny)e 2 —(Cosy +sIn
ut)=| 307 -siny) 5 (Cosy+siny)

1 H +i(6-6,) 1 H +i(6,-6y)
——(cosy+siny)e™ &%) __—_(cosy—siny)e" %%
ﬁ( y +siny) ﬁ( y —siny)
0 0
L cos setiw _—isin S
7z 72 37)
1 ; i .
——cos s e % %) __sin §
V2 N
0 0
—isin o cos &

Finally, by substituting Eq. (23) into Eq. (37),
and the initial state of the system, Eq. (34a),
into Eq. (17) the vector state of the system at
the end of the evolution, can be written as:

1 .

1 E(cos;/fsmy)

0 1 (cosy —siny) (38)
‘\P(tf)>:U(tf’ti)0 =l 2

0 %(coswrsiny)

0

As it can be seen from Fig. 8, with
y=-0.17Rad and coss =-1, the final state of the
system at the end of the interaction is
transferred to:

“I‘(tf)>:%(1 11 0f (39)

For a numerical analysis of the coherent
population transfer to the desired state, we
have assumed the Gaussian time-dependence
of the Rabi frequencies which are satisfied the
conditions of Egs. (35) and (23), as:
Q,(t) = Qoef[(t—llr)/T]z

(40.9)
Q,(t) 21'27906—[@—0.971—)”]2 (40b)
Q,(t) = 0.8, 07T (40.c)

The results are shown in Fig. 7. It is shown in
Fig. 7.a that the conditions of Egs. (34) and
(23) are satisfied with the Gussian pulse
parameters of Q4] = |00, | =[] = 40/T and r=2T.

The time evolutions of the system populations
are shown in Fig. 7.b, which represents a
coherent superposition of ground states with
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final equal populations. The fidelity of the
populations, in different levels, as a function
of time is shown in Fig. 7.c. It can be seen
from Fig. 7.c that at '~ fidelity of desired

state at Eq. (38) is equal to one (%100).

VI. IMPLEMENTATION OF THE
SINGLE-QUTRIT QUANTUM GATE VIA
TRIPOD ADIABATIC PASSAGE
With 7=7/2 and coss=-1, in Eq. (22) and
under the conditions of Egs. (20) and (23), the

single-qutrit quantum gate is resulted, via
tripod adiabatic passage, as:

010
Uy,=|0 0 1

1 00 (41)
Similarly, to transform the initial state of the
system|y(t,)) = 1) = @;0;0;0)", at the end of
interaction, into a ground state
w(t,))=[2) = (0:1:0;0)" the single-qutrit quantum
gate can be obtained as:

010
Usa=|1 0 0
001

With 5 =z/4and coss=-1 in Egs. (30), and
with the use of Eqgs. (28) and (23), the other
single-qutrit quantum gate is obtained via
tripod adiabatic passage, as follows:

(42)

(43)

%dl—‘ §‘|H [
Sl &l -

Also, to transform the initial state of the
system |w(,))=|2)=(0:1;0:0", at the end of

interaction, into the sluperposition of the
ground states \‘P(tf)>:ﬁQ1>+\3>), the single-

qutrit guantum gate can be obtained as:
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ERNPINES
PRI (44)
Mﬁl 1

N

For obtaining another single-qutrit quantum
gate, we were replaced 5 =-0.17 and coss=-1
in Eq. (37), and used the conditions given in
Egs. (23), and found:

J2 1 43

U3X3=\1f J2 1 43 (45)
°lVz 2 o

As the upper ways, to transform the initial

state of the system|w(t,))=|2) = (0;1;0;0)", at the

end of interaction, into the superposition of the
1 i -
ground states ‘Lp(tf)>:ﬁql>+‘2>+‘3>), the single

qutrit quantum gate can be found as:

1 V2 43
U3x3=i1 \/E \/§

(46)
V6 2 J2 0

VII. CONCLUSION

We have studied stimulated Raman adiabatic
passage in tripod configurations by deriving
the corresponding propagator in adiabatic
limit. We emphases the presence of non-
Abelian geometrical phase in propagator,
which can be controlled by an appropriate time
delay and peak amplitude ratios of the pulses.
A proper time scaling of the Rabi frequencies
allows us to transfer the population of the
system to a desired superposition of ground
states with the highest fidelity. In this paper,
we also obtained and implemented the single-
qutrit unitary gates. The presented analytical
solutions and numerical resulted can be
generalized to N-pod systems which have a
significant potential for creation multi-atom
entanglement and implementation multi-bit
unitary gates.
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