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ABSTRACT— We investigate the medium effect 

of a parity-time (PT)-symmetric bilayer on the 

quantum optical properties of an incident 

squeezed light at zero temperature (T=0 K). To 

do so, we use the canonical quantization 

approach and describe the amplification and 

dissipation properties of the constituent layers 

of the bilayer structure by Lorentz model to 

analyze the quadrature squeezing of the 

outgoing state from the bilayer structure. Our 

results show that despite the apparent 

compensation of the losses within the bilayer in 

the symmetry phase, the outgoing light is no 

longer squeezed. The results also show that the 

quantum optical effective medium theory 

correctly predicts the quantum features of the 

light outgoing from the PT-symmetric bilayer 

structure. 

KEYWORDS: Parity-time (PT)-symmetry, 

Quadrature squeezing, Electromagnetic field 

quantization, Quantum optical effective-

medium theory. 

I. INTRODUCTION 

Physical systems exhibiting parity-time (PT) 

symmetry was first suggested by Bender and 

Bottcher [1-2]. They have shown that the 

Hamiltonian hermiticity is not a required 

condition for its eigenvalues to be real. In 

other words, it is possible for a non-hermitian 

Hamiltonian to exhibit real eigenvalues, 

provided the PT-symmetry conditions are 

satisfied. A necessary condition for a 

Hamiltonian with a complex potential to be 

PT-symmetric is ( ) ( )*  ,V V= −r r where r is 

the three-dimensional position vector and V is 

the potential energy with a complex conjugate 

V*. Another intriguing property of these 

systems is the possibility of a phase transition 

from a real to a complex spectrum because of 

the PT-symmetry spontaneous breakdown.  

An optical analogy of a PT-symmetric 

potential is a complex refractive index, n, 

satisfying the condition 
*( ) ( ).n n= −r r  Thus, a 

typical PT-symmetric optical structure can be 

implemented by coupling a pair of gain and 

loss slabs characterized by the refractive 

indices both satisfying ( ) ( )Re  Ren n  =  − r r  

and ( ) ( )Im  Imn n  = −  − r r . This suggests 

optics as a fertile ground for experimental 

investigations on PT-symmetric systems. 

Moreover, PT-symmetry leads to a series of 

intriguing optical phenomena such as coherent 

perfect absorbers, anisotropic transmission 

resonances, and unidirectional invisibility 

[3-4]. 

The dielectric slabs can have many 

applications in classical and quantum optics. 

Particularly, quantum light transmission 

through dielectric slabs is one of the important 

problems in the quantum optics because the 

quantum light is an important prerequisite for 
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different tasks of quantum information 

processing, such as quantum cryptography, 

quantum computing, and quantum voting. A 

dielectric slab is macroscopically described by 

an electric permittivity ( )   that is a complex 

function of frequency, whose imaginary part 

determines whether the slab is a gain/loss 

medium. According to the dissipation-

fluctuation theory, there is a quantum noise 

due to the dissipative nature of these media. 

Thus, the absorption in a dielectric medium 

adds noise to a beam of light, having 

detrimental effects on the nonclassical features 

of the quantum light. Given the fact that the 

effect of loss in a PT-symmetric structure can 

be compensated at some exceptional points, it 

would be of great interest to study the effects 

of propagation across these optical structures 

on the nonclassical properties of an incident 

quantum light. Note that at these points the 

absolute values of the real and imaginary parts 

of the refractive index become identical. In 

order to describe the aforementioned effects, 

one can treat an electromagnetic wave in the 

framework of full quantum theory as a stream 

of photons interacting with the media. 

In this paper, we investigate the medium effect 

of a PT-symmetric bilayer on the quantum 

optical properties of an incident squeezed light 

at zero temperature 0 K. To do so, we 

calculate the quadrature squeezing of the 

outgoing states and show how the quantum 

features of the incident state are degraded 

when transmitted through the PT-symmetric 

bilayer structure. 

II. QUADRATURE SQUEEZING 

We consider a PT-symmetric bilayer structure 

composed of two slabs of identical thicknesses 

l, and dielectric permittivities ( ), g  r  and 

( ),  ,l  r  satisfying the PT-symmetry 

condition ( ) ( )*,  , .l g   = −r r  In other 

words, the absolute magnitudes of the gain and 

loss parameters are equal. A schematic of the 

proposed bilayer structure, surrounded by 

vacuum, is illustrated in Fig. 1. Consider an 

optical beam of light normally incident (i.e., 

along the x-direction) upon the bilayer. 

 
Fig. 1. A schematic of a PT-symmetric bilayer 

composed of two slabs of identical thicknesses, l, 

immersed in the vacuum and illuminated by a 

quantum squeezed state from the left side. εl(g) 

represents the loss (gain) medium permittivity. The 

arrows, →(←), together with the operators aj+(-) 

with j=1 and 4 indicate the incoming (outgoing) 

fields in the regions 1 and 4. The homodyne 

detector at the right side of the bilayer is used to 

measure the output quadrature variance (see 

Eq.(12)). 

According to the canonical quantization of the 

electromagnetic field in the presence of a 

medium, the positive frequency component of 

the vector potential operator is [5,6]: 

( ) ( )

( )

Ω

Ω

ˆ

ˆ

,ˆ
i x

c

i x

i tc

A x t d a e
c

a e e






 
 




−

+

−

−


= +








00

4
 (1) 

where Ω=1 or 4, indicating the light is incident 

from the left or right,  is the area of 

quantization in the y-z plane, and the indices + 

and − refer to the right going and left going 

propagating modes. The negative frequency 

component of the vector potential operator is 

obtained by taking the Hermitian conjugate of 

Eq. (1). Using the quantum input-output 

relations, the annihilation operators of the 

output modes, ( )ˆ ,a x −1 1 and ( )ˆ ,a x +4 3 , can 

be expressed in terms of the annihilation 

operators of the input modes, ( )ˆ ,a x +1 1 and 

( )ˆ ,a x −4 3 , and the noise operators, 

( )F̂ − and ( )F̂ +  [5-7]: 
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( )

( )

( )

( )

( )

( )

ˆˆ ˆ

ˆˆ ˆ

, ,
.

, ,

Fa x a x

a x a x F

 

  

−− +

+ − +

    
= +     

 
     

1

4 3

1 1 1

4 3

A  (2) 

The quantum noise originating from the loss 

and the gain layers is given by: 

( )

( )
( ) ( )

( )
( ) ( )

( )

ˆ

ˆ
.

F c c

c cF

  

 

− + +

− −+

     
= +     

 
    

2 32 3

2 3

B B  (3) 

Here, the coefficient matrices A  and 
( )

( , )
j

j = 2 3B  are written as:  

( )1 21

22

11 22 12 12

1A
A

A A A A A

− − 
=  

− 
A  (4a) 

( )

( ) ( )

( ) ( ) ( ) ( )

( )

,

j

j j

j j j j

A

B B

B B B B B B B B

−=

 − −
 
 − − 

2

21 22

11 22 12 21 12 22 12 22

1B

 (4b) 

where the matrices B  and A  satisfy the 

relations 
( ) ( ) ( ) ( )

B B R S =
2 3 3 2

, 
( ) ( )B S=3 3

and 
( ) ( ) ( )

A B R S =
2 2 1

. Also, ( )j
R  are diagonal 

2×2 matrices with 
/( ) ( ) jl cj jR R e

 −
==11 221 , in 

which l =2  and g =3  are, respectively, 

the imaginary parts of the refractive indices of 

the loss and gain layers. Furthermore, the 

elements of the scattering matrices 
( )jS  are 

given by: 

( )
( )

,
j j ji x

j j j j c

j j

n n
S e

n

  




+ −
−+

+

+
=

1

1

11

1 2
 (5a) 

( )
( )

,
j j ji x

j j j j c

j j

n n
S e

n

  




+ +
−+

+

−
=

1

1

12

1 2
 (5b) 

( )
( )

,
j j ji x

j j j j c

j j

n n
S e

n

  




+ +
−+

+

−
=

1

1

21

1 2
 (5c) 

( )
( )

.
j j ji x

j j j j c

j j

n n
S e

n

  




+ −
−+

+

+
=

1

1

22

1 2
 (5d) 

Here, ln =2 , 
gn =3  are, respectively, 

the refractive indices of the loss and gain 

layers, and l =2  and g =3  denote the real 

parts of the corresponding complex 

parameters. 

Since the input optical fields before arriving at 

the PT-symmetric bilayer cannot sense the 

presence of the slabs in free space, the optical 

input operators satisfy the bosonic 

commutation relation [7], 

( ) ( ) ( ) ( )

( )

† †,ˆ ˆ

.

ˆ ˆ ,a a a a   

  

+ + − −
   = =   

− 

1 1 4 4  (6) 

Substituting Eq. (5) into (2) results in a similar 

bosonic commutation relation for the outgoing 

operators, 

( ) ( ) ( ) ( )

( )

† †, ,

.

ˆ ˆ ˆa a a a   

  

+ + − −
   = =   

−

 



4 4 1 1  (7) 

Using Eqs. (2)-(6) together with the properties 

of the incoming fields and the noise operators, 

one can calculate the quantum properties of 

the output fields at any position outside the 

PT-symmetric bilayer. Hence, having a 

squeezed quantum state incident from the left 

and a vacuum state incident from the right, one 

can demonstrate the quantum optics effect of 

the PT-symmetric structure. 

Nowadays, the most widely used methods for 

generating a squeezed state of light rely on the 

parametric down-conversion, a process in 

which one photon is converted into two phase-

correlated photons of lower frequencies. 

Mathematically, this squeezed incident 

quantum state of light can be written as 
ˆ({ ( ), ( )})L S    = 0  with the following 

squeeze operator [6]:  

( )(

( ) ( ) ( ) )

Δ

*

† †ˆ ˆ

ˆ({ ( ), ( )}) exp

Ω h.c.
i

S d

e a a



 

      

 
−

+ +

= 

− −


0

1 1 2

 (8) 
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where ( )   and ( )   are the phase and 

amplitude of the squeezed state at a given 

frequency ( ) that controls the strength of the 

light squeezing. The squeezing strength can be 

measured by a balanced homodyne detector 

(see Fig. 1), where the fields from an optical 

signal and a local oscillator are superimposed 

on a beam splitter. The difference in the 

photocurrents generated by the two outputs of 

the beam splitter can be represented by an 

operator [6]: 

( ) ( ) †ˆ h .ˆ ˆ c.

t T

LO

t

i dt a t a t

+

+= −
0 0

0

4O  (9) 

The detector is considered to be on during the 

time interval t t t T  +0 0 0 . The operator ˆ ,LOa  

in Eq. (8), represents the local-oscillator field,  

( )  / expˆ ,ˆ
LO LO LO LOt F i i t  = −1 2

 (10) 

which is assumed to be in a coherent state 

  .LO  Here, ˆ
LOF  represents the local-

oscillator mean photon flux and LO  and LO  

denote the corresponding phase and frequency. 

Assuming the local oscillator field to be 

stronger than that of the input signal, the 

measurement operator (8) can be written in 

terms of a dimensionless homodyne electric 

field operator as, 

( )ˆ ˆ , )ˆ (LO LO LOF T E  =

1

2
0O  11) 

From the above definitions, the variance of the 

transmitted light through the PT-symmetric 

bilayer for a sufficiently long time interval 

(i.e., a narrow detector bandwidth), is given 

by: 

( )

( ) ( )

( ) ( )

†

† †

Δ ,

, , ,

ˆ

ˆ

ˆ ,ˆ, ,

ˆ

LO

LO LO

LO LO LO LO

i

LO LO LO LO

E

a a

a a e


 

   

   

+ +

+ +

  =
 

+ +

 
 

out

Re

2

4 4

2
4 4

1 2

2

 (12) 

By making use of the input-output relation (1), 

after some manipulations, the measured field 

variance reduces to, 

( ) ( ) ( )


( )( ) 

out

arg

†ˆ ˆ ˆ,

sinh

Re sinhLO

LO LO

i

E F F

e  

   





+ +

− −

  = + +
 

 
 

−


22

2

2 2
21

2 2

1

2

2
A

A  (13) 

Hereafter, we assume that the gain and loss 

slabs are both maintained at zero temperature 

(T=0 K). Hence, from Eq. (3), the average flux 

of the noise photons due to the spontaneous 

emission processes reduces to: 

( ) ( ) ( ) ( )(
( ) ) ( ) ( ) ( )(

( ) ( ) )

2
3

21

2
3 3 3

22 21 22

†

-3 3 *

21 22

ˆ ˆ 2 sinh e

sin
e

.

g

g g

g

l

g

gl i l

g

i l

F F l

l
e

l

e



 



  





−

+ +



= − +

− +

B

B B B

B B

 (14) 

III. THE EFFECT OF THE 

PT-SYMMETRIC BILAYER ON AN 

INCIDENT QUANTUM LIGHT 

Due to the complexity of Eq. (12), it is 

difficult to obtain any results analytically. 

Hence, we numerically calculate the field 

variance Δ Ê 
 

out2

 for a single-resonance 

PT-symmetric bilayer of Lorentz type, as an 

example. Hence, the complex permittivity of 

the gain/loss (g/l) slab can be written as [8], 

( ) /

/

/ /

/

/

.
g l g l

g l

l l

g l

g gi

  
  

  
= −

− +

0

0 2 2
0

 (15) 

where ε0 represents the medium background 

permittivity, ω0 is the emission frequency, γg/l 

represents the gain/absorption linewidth, and 

αg/l is the gain/absorption coefficient. The PT-

symmetry conditions for this bilayer structure 

can be written as, ( ) ( )gRe Re  l     =      and 

( ) ( )Im[ ] Im[ ]g l   = − . Moreover, the loss 

slab parameters satisfy αl >0 and γl >0 while 
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those of the gain slab satisfy αg <0 and γg >0. 

We have used the values ω0l=1 PHz, ω0g=1.2 

PHz, αl =20.86, αg =−2, γl =0.067 PHz, 

γg =0.14 PHz, same as those used in [9] that 

satisfy the PT-symmetry conditions and the 

symmetry phase. 

Figures 2(a) and 2(b), respectively, show the 

variance of the transmitted squeezed light for 

the cases that the homodyne detection is 

placed at the right and the left hand-sides of 

the bilayer structure, showing the transmitted 

and reflected lights. Quadrature squeezing 

occurs when the variance of the quantum 

fluctuations in one of the quadrature 

components of the electromagnetic fields 

drops below the vacuum state (i.e. <1). We 

observe that although the loss effect is 

compensated within the PT-symmetric 

bilayer, the quadrature squeezing is greater 

than unity (i.e. >1). This means that the 

outgoing light is no longer squeezed. 

Furthermore, this deviation from unity 

becomes maximum when the frequency of the 

input light approaches that of the bilayer 

resonance. This is because of the quantum 

noise flux (Eq. (13)) reaches its maximum 

value near the bilayer resonance, where nearly 

complete population inversion is achieved and 

the excited-state population can decay 

spontaneously. Far from the resonance, 

|γg|=γl ≈ 0 and the quantum noise flux vanishes. 

Therefore, the bilayer structure is seen like a 

lossless/gainless slab by the incident quantum 

light — i.e., the transmitted field is prepared in 

a state close to the squeezed vacuum state. 

IV. QUANTUM OPTICAL EFFECTIVE 

MEDIUM THEORY FOR THE LAYERED 

PT-SYMMETRY 

In this section, we present the quantum optical 

effective medium theory (QOEMT) in a 

layered metamaterial with a unit cell much 

smaller than the incident wavelength to 

describe the PT-symmetric bilayer entirely in 

terms of its effective dielectric function [6, 7]. 

Due to the existence of the quantum noise in 

the system, the QOEMT differs from the usual 

effective index theories in classical optics [6, 

7]. In this approach, the effective parameters 

 
Fig. 2. Quadrature variance of Eq. (10) for an 

incident squeezed light with the squeezing strength 

ρ .= 0 2  and the phase ρ LO = −2 2 . Here, the 

thickness of the loss and gain slabs is l=500nm. The 

Homodyne detection is placed at (a) the right and 

(b) the left hand-sides of the PT-symmetric bilayer 

structure. 

can be obtained from the small-(ω, k) Taylor 

expansion of the known dispersion relation for 

the multilayer structure. In this manner, the 

effective parameters of the PT-symmetric 

bilayer structure for a s-polarized light can be 

obtained from the Bloch dispersion relation, 

( ) ( ) ( )

( ) ( )

effcos cos cos

sin sin

g l

g l
g l

l g

d l l

l l

  

 
 

 

= −

 
+  

 

1

2

 (16) 

where /   ( , )j j c k j l g  = − =2 2 2  is the 

normal component of the wave vector in the 

jth layer, in which k is the in-plane wave 
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vector. In the long-wavelength limit, by taking 

the Taylor expansion, Eq. (14) reduces to: 

||

,
k

c

 

 
⊥

+ =eff

eff eff

2 2 2

2
 (17) 

where 
||

eff  and 
⊥eff  are the 

components of the standard effective dielectric 

tensor, corresponding to the components of the 

electric field parallel (||) and perpendicular (⊥) 

to the layers, respectively. For the system 

under study with a normal incidence (i.e., 

k=0), we have: 

( )|| l g   
⊥

= = +eff eff 2  (18) 

In quantum optics, besides the effective index, 

another effective parameter, 

( ) ( )
,

, ,theff j j

j g l

N N T  
=

 = − + +
 

1 1
2 1

2 2
(19) 

known as the “effective noise photon 

distribution” is required [5-7]. Here, 

( ) ( )( ), /j B jN T k T 
−

= −th exp
1

1  represents 

the mean number of the thermal photons, 

wherein the parameters ℏ and kB are the 

reduced Planck’s constant and the 

Boltzmann’s constant, respectively. Moreover,  

( )

( )

[ ]
,

[ ]

j

j jp
 


 

=
eff

Im

Im
 (20) 

represents the dielectric parameter of the j-th 

layer in the unit cell, where pj is the 

corresponding layer volume fraction that 

equals 0.5 in the present bilayer structure. The 

QOEMT predicts that the quantum noise 

contribution to the output variance of the PT-

symmetric bilayer is given by:  

( ) ( ) ( )

( ) ( )( )
( )

†

eff eff Im[

Im[  

'

ˆ

 

ˆ

]

,

]F F N

N r t

  

 

  

= −

+ −



− − 

−

eff eff

eff eff eff eff

2 2
1 1 (21) 

where the effective reflection coefficient, reff , 

and the effective transmission coefficient, teff , 

for the effective PT-symmetric medium are 

given by [6,7]: 

( )  ( )

( ) ( )  

exp
,

exp

i l
r

i l

  

    

− −
=

+ − −

eff eff

eff

eff eff eff

2 2
0

2 2

0 0

4 1

4
(22a) 

 

( ) ( )  

exp ( )
.

exp

i l
t

i l

   

    

−
=

+ − −

eff eff

eff

eff eff eff

0 0

2 2

0 0

4 2

4
(22b) 

 
Fig. 3. Comparison of the quadrature variance for 

an incident squeezed light of strength ρ .= 0 2  

and phase,
ρ , = −LO2 2  on the effective 

PT-symmetric structure with l=2.5 nm, obtained 

from the exact calculation (blue solid curve) and the 

QOEMT (red dashed curve), when the homodyne 
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detector is placed at the (a) right- and (b) left-hand 

sides of the structure. 

By substituting Eqs. (15) and (17)-(21) into 

Eq. (12), the variance of the transmitted light 

is obtained in the QOEMT. 

Figure 3(a) compares the quadrature variance, 

obtained from the exact calculations (blue 

solid curve) with those obtained from the 

QOEMT (red dashed curve) when the 

homodyne detector is placed at the right-hand 

side of the PT-symmetric bilayer. Figure 3(b) 

depicts a similar comparison for the case in 

which the homodyne detector is placed at the 

left-hand side of the PT-symmetric bilayer. 

We observe that the quantum optical effective 

medium theory correctly predicts the 

quadrature squeezing of the light outgoing 

from the PT-symmetric bilayer structure.  

V. CONCLUSION 

In this paper, we have investigated the medium 

effect of the PT-symmetric bilayer on the 

quantum optical properties of an incident 

squeezed light. By calculating the quadrature 

squeezing of the output state at zero 

temperature, we have found that even in the 

symmetry phase, the squeezing of the 

transmitted quantum light is severely 

degraded, so that the output state is not 

squeezed near the resonance frequency of the 

PT-symmetric bilayer. The results also show 

that there are excellent agreements between 

the exact method and the QOEMT for a 

squeezed light passing through a PT-

symmetric bilayer structure. 
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