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Abstract— We generalized the squeeze and
displacement operators of the one-dimensional
harmonic oscillator to the three-dimensional
case and based on these operators we construct
the corresponding coherent and squeezed states.
We have also calculated the Wigner function for
the three-dimensional harmonic oscillator and
from the analysis of time evolution of this
function, the quantum Liouville equation is also
presented. Further properties of the quantum
states including Mandel’s Q@ and quadrature
squeezing parameters are discussed as well.
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l. INTRODUCTION

The operator theory of harmonic oscillators [1]
constitutes the groundwork of the elaborate
quantum optical theory of photons. The
quantization of electromagnetic radiation can
be explained elegantly in terms of creator and
annihilator operators, which operate on the
corresponding energy levels [2-4]. Due to the
second-order potential of harmonic oscillators,
they can easily provide a direct bridge between
classical optics and quantum optics through
the phase-space Wigner functions [5], which
are of extreme importance in the tomography
of classical and non-classical lights [6-8].

Following the definition of coherent states put
forward by Glauber [2-4], as the eigenstates of
the annihilator operator, many studies have
been done in order to generalize the concept of
coherent states and the so-called squeezed
states [5, 9]. Among these include an
alternative definition of the generalized k-

photon coherent states [10], which introduce a
modification of the squeezing operator to
describe higher-order interactions. In another
report [11] the authors consider the
generalization of coherent states and their
superpositions connected through unitary
transformations, where the transformation
maps the ground state of the harmonic
oscillator (vacuum state) onto an arbitrary
superposition of N > 2 coherent states.

Since the successful demonstration of
squeezed states of light in 1985 by Bell
Laboratories [12], squeezed states have
attracted much interest because of their
possibility to significantly suppress the
quantum noise, which is generally believed to
be originated by the zero-point fluctuations of
the vacuum [5]. Currently, squeezed states are
routinely produced at laboratories using both
solid-state and semiconductor lasers [13] and
in high-Q cavities [14].

Similarly, generalizations or extensions to the
concept of squeezed states have been
considered in numerous researches. Nieto [15]
was the first to discuss the explicit functional
forms for the squeeze and time-displacement
operators and their applications, as successive
multiplications of exponentials of simple
operators. Bialynicki-Birula [16, 17] presented
a discussion of squeezed states of a
generalized infinite-dimensional —harmonic
oscillator, when the ground state wave
function takes on a Gaussian form. He
furthermore presented the corresponding
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Wigner function and discussed its relativistic
properties.

As another generalization of the simple one-
dimensional harmonic oscillator, the problem
of damped harmonic oscillator because of its
time-dependent Hamiltonian was proposed and
considered by Um et. al. [18], and they
presented closed form expressions for squeeze
and displacement operators. Also, Sohn and
Swanson [19] have recently obtained exact
transition elements of the squeezed harmonic
oscillator when the generalized Hamiltonian

describes  two-photon  processes, using
Bogoliubov  transformations. Fakhri [20]
considered the three-dimensional (3D)

harmonic oscillator and Morse potentials, and
showed that the constructed Heisenberg Lie
superalgebras would lead to multiple
supercharges. In his analysis, he analyzed the
3D harmonic oscillator in the spherical system
of coordinates. Finally, Fan and Jiang [21]
have constructed three mutually commuting
squeeze operators, which are applicable to
three-mode states.

In this paper, we revisit the 3D harmonic
oscillator and obtain generalized expressions
for the corresponding coherent and squeezed
states, starting from the Cartesian coordinates
in which the harmonic oscillator can be easily
factorized. We also present closed-form simple
expressions which explicitly represent the
corresponding displacement and squeeze
operators, and the corresponding generalized
Mandel’s Q parameter is obtained for the
generalized squeezed state in the form of a
vector. We show that how proper definition of
vector operators and variable could greatly
simplify the notations of operators and
eigenstates.

Il. COHERENT STATES AND THE
DisSPLACEMENT OPERATOR

A. Wigner function for 3D harmonic
oscillator

We can calculate wave function of three-
dimensional (3D) harmonic oscillator directly
from the Schrodinger equation, with the
diagonalized potential given by
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M
U(r) = ?(a)xxzxz + wyy?y?
+ w,,%2%) (2.1)
Here, without loss of generality one may
assume that w,, = w,, = w,; = w. Now let

|m,n,l) denote the energy eigenstates of 3D

harmonic  oscillator, hence for the

corresponding annihilation and creation

operators we have
a,lm,n, 1) =vm|lm—1,n,1) (2.2 —a)
aylm,n, 1) = Vnlm,n — 1,1) (2.2 -Db)
a,mnl) = Vilm,n, 1 — 1) (22—-0)
afimnl)=vm+1m+1,nl) (22-d)
&yTIm, n)=vn+1mn+11) (22—e)
&ZTIm, n ) =Vi+1mn, L+ 1) 2.2-1

Hence, the eigenfunctions will be

lpnml(r) = (rlm; n, l)

3 1 K% \* 1.,
- 1/2n+m+ln! m!l! <?> exp <_§K r )
H,, (k) Hyp, (,ey) H,y (1) (2.3)

where k=, Mw/h. We can find the
corresponding Wigner function for this system
from the definition of the Wigner function as

Winmpy (1, p) = (%)3 f ﬁ d> exp (—%p

-¢) v+ 22]p|r - 2

Here, p is the density operator and { = {, 1 +
{yj + {;k represents the dummy integration
variable. In the case of pure state with
p = |m,n, ){m,n,l| gives

(2.4)

133
Winm (T, p) = (ﬁ)

fﬁ @ exp (=32 8) P (= )

l'pnml (I‘ + %Z)

The Wigner function of 3D harmonic
oscillator will take the form

(2.5)
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(_1)n+m+l
Winmy (@, p) = B OHE

ool (B -] [+ )

-fl ]

L, {2 [(%)2 + (KZ)Z]} (2.6)

in which L,(x) is the Laguerre function of
order n; see appendix A for the detailed
derivation of (2.6)._For the generation of
coherent states, we must apply a suitable
displacement operator to the ground state of
3D harmonic oscillator. In doing so, we need
to generalize the method of [15] in
construction of 3D displacement operator.

B. Construction of coherent state

The ground state of a 3D harmonic oscillator is
given by

3
N
Yo (r) = (r|0) = (%)4 exp (—%KZTZ) 2.7)

in which the ground state |0) is defined using
the null integer triplet 0 = (0,0,0). Now we
define the displacement operator as

D(a) = exp(aya," — a,*dy)
exp(ayay - a,"dy)

—a,*ay,) (2.8)
Here, the displacement vector = a,i+ a,j +
ak , with ay, a,, and a, being complex
constants. As will be shown, the order of

displacements along x, y, and z is irrelevant.
This is because of the obvious relations

exp(azd;

la,a,]=[aa, =0,

LY =X,Y,Z (29 —-a)
la,a,] = [a a,] =0
LFV (29 -Db)

In trying to find a compact form for this
operator we start from the Baker-Campbell-
Hausdorff relation [5], which reads
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exp(4A + B)
- " 1., .
= exp(A)exp(B)exp (E [A, B]) (2.10)
given that
|4.[4,8]] = [B.[4.B]] =0 (2.11)

Hence the displacement operator is simplified
into the compact form

D(a) = exp(a-af —a* - a) (2.12)

where the vector creation and annihilation
operators are defined by
a=a,i+a,j+ak (2.13 —a)
at=ai+a,"j+a,'k (2.13 = D)
The application of the displacement operator
D () to the ground state |0) results in

D(a)|0) = |a) (2.14)

where |a) is defined as the generalized
coherent state in 3D. Also, from the properties
of 4 and a' one can further observe that

D(a) = exp (—%a- (x*) exp(a - at)
exp(—a* - a) (2.15)

The position representation of |a) will be

3
(rla) = (%) exp {—%[(Kx - \/Eax)z
+ (ky — \/an)z
+ (KZ - \/Eaz)z]}

_ (’;)4 exp (— 3 e —v2al) (2.16)

The direct application of the displacement
operator also can be simply shown to equally
result in the triple infinite series of the
generalized coherent state as

) = D()[0) = exp (—%a* : a)


https://mail.ijop.ir/article-1-35-en.html

[ Downloaded from mail.ijop.ir on 2025-07-29 ]

M. Miri and S. Khorasani

z (atyi - ah)™ (ayj - aT) (azk- a*)

m!n!l!

1
= exp (—Ea* . a)

(o]
Z Mlmnl)

min!l!

mmn,l=0

(2.17)
mmn,l=0
C. Over-completeness of coherent states

As one of the important properties of coherent
sates we can examine the over-completeness
of the proposed coherent sates. A set of states
are called over-complete if they form a
complete set and are not orthogonal. We first
consider the completeness of coherent states:

[ee)

fla)(al da = .Ufla)(al d*a, d*a, d*a,

|ac]? o
ff d?a, dzaydzazexp<—7 exp| ——-

[ee]
Z apeay’aftaylaza;” In,m, 1) (p, q, wl

Jnlm!liplq!w!

n,m,l=0 p,qw=0

(2.18)

where d?a, = d(Re{a,}) d(Im{a,}) ; (=
x, ¥, z. Using the change of variables:

a, = r,exp(i6,)
L= 2.19
{dzal =1dnd6, ’ L=LY2 (2.19)
results in:
In, m, IXp, q, w|

(o0} [o0]
Z z Im!Uplg!lw!
ATT=0 prae0 nlm!l!plqlw!

[ee]

n+p+1 m+q+1_1+w+1 2
fff Ty 7, 1, exp(—7?) dry dr, dr,

o

2T 2T 21T
j f f exp{i[(n - )O; + (m — 06,
P ia- w)6,1} do, de, do, ;

r’=ri+ri+1rf (2.20)

It is known that fozn exp[i(n —m)0] do =
26 pm, SO USing 1,2 =y, = 2rdr, = dy, ; t
X,¥,z, we get:
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fla)(al d®a =

[00]

In, m, I{n,m,I|
——————— | exp(=v)¥¥ dyx

nlm!l!
nm,l=0 —00
f exp(—yy )y dyy f exp(—y)vidy, (2.21)

which can be easily simplified by using the
identity fjooo exp(—y)y"dy =n! into the
expression:

o)

f o)l doa =72 > |n,m, Dn,m, 1|
—00 n,m,l=0

Therefore the proposed coherent sates
constitute a complete set. Now we examine
their non-orthogonality by considering the
inner product of two different coherent states

|} and |B) :

(2.22)

SRt alalal (n,m,lp, q,w)

Z Z ,Bx y
n,m,l=0 p,qw=0 \/qu'w'

o w oAl XM pr o Nl
n};_o(ﬁxax) (f'y:ly')“ (Bzat2)
=exp[-3(a at BB +B qf
= exp|5 (8 @)

exp| -5 B~ o) (B~ ]

Hence, we obtain the squared magnitude of the
inner product as:

(2.23)

l(Bla)|* = exp[—(B — )" - (B — )]
#0 (2.24)

which declares that 3D coherent states are not
orthogonal, but their inner product tends to
vanish, when |B — al| is sufficiently large.
Equations (2.22) and (2.24), establish,
therefore, that the proposed coherent sates are
over-complete.
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D. Quantum Liouville equation in 3D

Now we attempt to find the quantum Liouville
equation for the generalized 3D harmonic
oscillator system of interest. So we start from
time evolution of our six-dimensional (6D)
Wigner function. We have the Von Neumann
equation for the time evolution of density
operator as [1,5]

—=—-= 2.25
Jt h ( )
with H representing the Hamiltonian of the 3D
harmonic oscillator.  Starting from this
equation we can show that

d
6t<r+ z|p|r——z>
= ifr+3qmalr-59)

With substitution of (2.19) in the definition of
Wigner function we get

(2.26)

0
—W(r,p,t)

=T
at +Q

(2.27)
Here, T and Q respectively correspond to
kinetic and potential energies in terms of
Moyal functions and introduce a Fourier
transform as in [5]. The derivation closely
follows the approach in [5], however, we employ
the generalized 3D expressions for functions and
operators. Hence, T and Q will be given by the
expressions

_ i1(1)3
~ h2M \2mh

ffm d* {exp (—%p : Z)G(r,p, 4

G(r, p,()—<r+ (| r——(> (2.28 —a)

and

o=—(e) [ #son (50 )rcen

R(r,p, 0 = <r + %z|[17, /3]|r - %z) (2.28 —b)

The potential energy operator U is similarly
defined as in [5]. Now we need to calculate T
and Q in terms of the Wigner function and its
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higher-order derivatives. First we consider the
kinetic energy term, which gives rise after
some mathematical manipulations to the
following equation for the kinetic energy term

1
T = P V,.W(r,p,t) (2.29)

Now consider potential energy term. From the
3D Taylor expansion near r, we have:

o(r39)- Y aleges) v e
Therefore we obtain
u(r+38) +U(r-0)
Z 252?22:), (9" gvruw @y
and
u(r+57)-0(r-39)

2(ih)2n+1 ( i>2n+1

., 7+ 2n+ DIV h @-W"1u(r)

(2.32)

We finally have the closed-form expression

( 1)nh2n 2n+1
Q= Z Gt D)1 (V-v,)" U@®W(r,p,t)

(2.33)
With substitution of (2.29) and (2.33) in (2.27)
we get the Liouville's equation for the time-
evolution of the Wigner function in 3D in the
compact form

9
[+ 37| werp.0
@ 1 nth n+
222(’1(2) +1)|(V'Vp)2 UEWrp,0)
(2.34)

For the 3D harmonic oscillator in general case,
the potential U(r) is second-order in r. So for
the harmonic oscillator, the right-hand-side of
the Liouville's equation is equal to zero.
Hence, the quantum Liouville's equation for
3D harmonic oscillator will be simply
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d 1
&-}_Mp -V —=VU()-V,| W(r,p,t)

=0 (2.35)
E. Time evolution of coherent state

The Hamiltonian of 3D harmonic oscillator is
time independent, so for the temporal
evolution of the coherent state we can write
down

|choh (t»

=exp(—%ﬁt) Z Im, n, [){m, n, [|¥eon(0))

m,n,l=0
(2.36)

Defining the expansion coefficients as

Qm,n,l = (m,n, lllpcoh(o»

we get after some algebra

(2.37)

q 3 ( 1, )axmay”azl
mnl = EXP _Ea o vm!n!l!
(2.38)

On the other hand

—~ 3
Him,n, 1) = hw <m+n+l+z>|m,n,l)

(2.39)
After simplifying we have

[Weon () = exp (—;iwt)

i (axe—iwt)m(aye—iwt)n(a,ze—iwt)l

oo vm!n!l!
1 , * ,
exp [—E(e‘“"t(x) . (e“‘“ta)] |m, n, 1)
(2.40)
from which we obtain
|‘pcoh(t)) 3
= exp (— Eiwt) |Peone ~it) (2.41)

From this relation we see that the time
evolution of coherent state is also a coherent

. 2
state, and also after one period f of

oscillation, the state vector phase change is
3 2T

-w X — = 3m.

2 w
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F. Position representation of coherent state

In the below we try to find a compact form for
position representation of coherent state of 3D
harmonic oscillator. This results in

3
2\%
(r¥eon(0)) = (%)

1o x 2,.2
exp 2(31a)t+a o+ K°1r4)

1 )
exp (— > e 2wty . a)

exp(V2e~@txr - a) (2.42)
Using the definitions
2 .

F(t) = gRe{e‘l“’ta} (2.43 —a)

p(t) = V2hkim{e o} (2.43 —b)
3
®,,(t) = Ea)t (243 —0)
* 2
iA5(6) = = (1+ e729%) = 2 7(6) - 7(0)

1 , .
— E(6,—21(4)15“* Co— Re{e—ZLwta . (X})

(243 — d)

Finally, the complete form of position space
representation of coherent state is

K? %
Yeon(r, t) = (r|Yeon(t)) = <?>

KZ
exp {— 5 [r=r@®]-[r- f(t)]}

exp [+ B(0) - 70|

exp{—i [(sz (t) + Ap (t)]}

Here, as for the case in 1D problem A, (t) for
real a will take on real values, otherwise it
will be complex.

(2.44)

I11. SQUEEZED STATES AND THE
SQUEEZE OPERATOR
Now we try to find functional form of squeeze

operator and squeezed state of 3D harmonic
oscillator and position representation of this


https://mail.ijop.ir/article-1-35-en.html

[ Downloaded from mail.ijop.ir on 2025-07-29 ]

International Journal of Optics and Photonics (IJOP)

squeezed state. For 1D case, the squeeze
operator is defined as

1
S(s) = exp( satat — ES*&&) (3.1)
where in general s is a complex number

s =|s|e!® = s; +is, (3.2)

Expanded form of 1D squeezing operator is
therefore

A 1 . 1
S(s) = exp [Eeletanhlsl(df)z] sechZ|s|

[Z (sechlsl

1 .
exp [— Ze“etanhlsl(d)z] (3.3)

" @ty

If we use notation of [15] as

f:%(aﬂif) (34 —a)
. 1

— A= ~ At _
d=ip _z(a at) (3.4 —b)

the new form of squeezing operator will take
the form

S(s) = exp [—sl (9?5 + %)
+ %SZ(QZ + 32)] (3.5)

In the expanded form we have

s, sinh|s A
S(s) =g~ exp[' 2 | lAZ] exp[—In(g)2d]
2ls| ¢
[_ S, smhlsla ] 36)
exp |i —— :
Pl 2l g
where
S1
g = cosh|s]| +msmh|s|
7] 7]
— olsleos? (2) 4 e-Islsin? (2
elcos <2>+e sin (2) 3.7)

In generalization of this concept to 3D case we
consider 3D squeezing as independently
squeezing of wave function of harmonic
oscillator in the three x, y, and z dimensions.
So for the 3D harmonic oscillator this method
can be applied directly resulting as
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SA(S) = gx(sx)gy(sy)gz (s2) (3.8)

Here, S, (s,), .‘§y (sy), and S,(s,) operate only
on x, y, and z dimensions, respectively, and
hence the order of their appearance is
irrelevant as will be shown shortly. We have

A SyQy ' Gy — S, 0,4

FRNCLREFSUER R

3 syd,ta,t —s,a a,

Sy(sy) = exp > (39—-Db)
~ At ‘A A

A s,a, a, —s,"a,a

S,(s,) = exp( zz 2 5 z 2 Z) (39—-0)

Therefore
1 1
56 = exp[55:(a")" — 55 @7
1 RY
-25°(8)’]
.2 1 ~
exp [Esz(az ) —ESZ*(aZ)Z] (3.10)

Now let the following definitions hold

o [ 0

1
V= —(av + aVT)

V2
o, = ip, =—=(a, — a,"
v pv \/2( v v )
in which v = x,y,z. We furthermore we can
show that

(@2 @] =@ @] = 1@ @)
-l@h. @] =0 @)

(3.11 — a)

(3.11 — b)

where
LY =X,9,Z
LFV

With subsequent use of (3.12) we can show
that

@ [@h @
= [(cmz, @ (av)Z]]

=0 (3.13 —a)
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[(al)z, @2, (@vf)z]]
[(avf) @) (@) ]]

(3.13 — b)

[(@,)2 [(@)? (@,)%]
(3.13—¢)

(@2 1@ @) ]]
627,07 6]
- @@ @)

=0 (3.13 — d)
LV =X,Y,2
L#FV
From equation (3.13) and after using (3.12),
and the Baker-Campbell-Hausdorff relation
one can easily show that the squeeze operator
in 3D takes the more compact form

S(s) = exp{ [sx(ax ) + sy(&yf) + sz(azT)
— 5" (@)% — s, (ay)

s, @?] (3.14)
With the help of the definitions of vectors

S = Sl + 5,j + 5,k (3.15—-2a)
A2 =ai+a,’j+a,°k (3.15 — b)
—~ 2 2 2

At =aMiva,j+a, K (3.15 — ©)

we can find a rather compact form for
squeezing operator as

S(s) = exp E (s AT — st Kz)] (3.16)

The following commutation relations clearly
hold

[£,0] =

from which the alternate form of the squeeze
operator is obtained

A A A 1 ~ A
S(s) = exp|—s; - RI + I8z (R% + 82)]
(3.18)

In the last equation we have used the short-
hand notations

s; = Re{s}
s, = Im{s}

(3.19 —a)
(3.19 — b)
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RO = 20,1+ 90,j + 20,k (3.19 —¢)
R? = 2%+ 9?%j + 2%k (3.19 — d)
02=0,"i+8,"j+ 8,k (3.19 — )

IV. CONSTRUCTION OF

SQUEEZED STATES
For the generation of squeezed state we must
apply the squeeze operator and then coherent
operator on the ground state of harmonic
oscillator. Here in this process, we use the
notation of [15] employed in (3.6). This results
in

s, a) = D(a)S(s)|0) (3.20)
Notice that S(s)|0) represents the squeezed
vacuum. Following the previous definitions
and after some algebra we reach at the position
representation of the squeezed state as

Weq(r) =(rls, a) =

1 i
—3— €Xp <— El‘o : po)
w4C

1
r - — — 2 —ih
eXp(l po)exp[ (x xo) (2 - xz l x>]

&)
—1
ZgyCyz y

exp |—(z — zp)? —th
p[ (z = 2) (292622 )]
Here, T = Xoi +Yyoj + 20K , Po =po,i+

Po,J + Po,K, and C = C,C,C;, where

exp [—(y - ¥0)? <

(3.21)

¢, = /g,(1 + 2ih) (3.22 —a)
S2,sinh(7;)
=t - 22 —
2r.exp(}) 3 b)

L=X,Y,Z
sy, and s,, are elements of the vectors s; and

s, defined in (3.19), @ = (ry + ip,y)/V2, and

7, = (le)Z + (szl)z (3.23 -3a)

s
g, = cosh(t,) + %sinh(tl)
L

6 6
= exp(r;)cos? (j) + exp(—r,)sin? (3‘)

(323 - b)
6, = tan~! %2
L SlL

L=Xx,9,2

(3.23 -0
For the detailed derivation of the (3.21), please
refer to the Appendix B.
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A. Further properties of squeezed states

In this section we will consider two important
properties of squeezed states; quadrature
squeezing parameter and Mandel’'s Q
parameter. For 1D squeezed states these two
are defined as scalars, while for the proposed
3D states we define the generalized quadrature
squeezing and Mandel’s @ parameters in the
vector form. In the following we start with
Mandel’s Q parameter.

Mandel’s Q “as a measure of departure of the
variance of the photon number n from the
variance of a Poisson process” was first
proposed and calculated by Mandel [22, 23].

A2\ [~
0= ® ey

()
= (A%) — (A)? (3.24)

For an arbitrary state, Q can be negative, zero,
or positive, which respectively infers a super-
Poissonian, Poissonian or sub-Poissonian
statistics [24]. It should be added here that
Mandel has shown that, one should expect the
squeezed states to show sub-Poissonian photon
statistics through normal detection schemes
[23].

For our 3D squeezed states, we define a
vectorial Mandel’s @ parameter, Q =
(Qx, Qy, QZ) where Q, is the Mandel’s Q
parameter related to squeezing in the ¢
direction. Note that the proposed squeezed
state here can also be represented as the
multiplication of three squeezed sates:

Woq(r) = Ysq(x,y,2)

= Wsq (%) Ll’sqy(y) Wsq,(2) (3.25)
. 1 i .
Lpsql(]) =-—7— €exp (— Elopot) eXP(l lpol)
mw4C

1
exp l—(t —1g)? <29 7 ihl)l

L=x,9,2 (3.26)

Now by using the results of [24] for 1D
squeezed state, we can show that:
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Mandel Parameter Q

Mandel Parameter Q

Mandel Parameter Q

Mandel Parameter Q

r 2 0

Fig. 1 Mandel’s Q parameter plotted versus & and r
for various values of a.
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QL=_1+

|a,|?(e?" cos? 8§, + e~ 2" sin? §,) + 2 sinh? 1; cosh? 7,
|a,|? + sinh? 7,

L=Xx,9,2Z (3.27)
6, and 7, are defined in (3.23) and
2 _1¢o 2
lex,| =E(‘0+Pol) (3.28—a)
¢, =tan™1 (?) (3.28 — b)
0
5, =6, —% (3.28 — ¢)

L=X,Y,Z

In this case, Mandel’s Q parameter for
squeezing in each direction (Q, ; t=x,Y,Z2)
can be negative, zero or positive which means
the statistics of squeezed states in that
particular  direction is  super-Poissonian,
Poissonian or sub-Poissonian respectively.
Surface plots of the Mandel’s Q parameter are
illustrated in Figure 1, as a function of § and r,
while retaining a as a constant. As it can be
seen, there is no dependence on the angle &
when a = 0. For this special case, one can
easily check from (3.27) that Q, = cosh?r, +
sinh? ;.

Similarly, we can also define vectorial
quadrature operator:

o G B 1. 4
R1=X11+Y1]+Zlk=§(a+a’f) (3.29 —a)

=~ - o R 1

R, =X,i+%j+2Z,k= % (a—af) (3.29-b)
where 4 and AT are defined in (2.13). In 1D
squeezed state variances of quadrature
operators are measures of squeezing. In fact
for a 1D squeezed state with quadrature
I,=1/2(@a+a" and I, =1/2i(a—a"
operators squeezing exists if [25]:

(3.30)

Again for our 3D squeezed state, we can
calculate variances of elements of vectorial
quadrature operators from the results of [24]
for 1D squeezed state:

(Ai2><1 (Ai2)<1
1 4 or 2 2

(R°) = (44%,%), (4%, %),(02,%) (331-a)
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(Aﬁzz) = ((A)?22>'<A?22>,(AZAZZ)) (331 b)
(AL ) = %[ezn cos? (%)
+ e~ 2"t sin? (%)] (331 —0¢)
-]
+ e cos? (%)] (331—d)

I=X,Y,Z;, 1=x,9,2

Squeeze Parameter <A |, 2

Squeeze Parameter <A I2 2,

Fig. 2 Squeeze parameters versus ¢ and r.

Thus for 3D squeezed state, in direction
L = X,Y, Z squeezing exists if:

a1 1
(ALY < 7 or (ALY < 7 [=XY.Z2 (332)

Plots of squeeze parameters (3.31c) and
(3.31d) versus ¢ and r are shown in Figs. 2
and 3, respectively as surface and contour
diagrams. As it can be seen, squeezed states
happen over the domains in which (3.32)
holds, and any of the squeeze parameters fall

under %. Evidently, the transformation r —» —r
switches the subplots for (Aflz) and (Afzz),

due to the algebraic forms of the expressions
(3.31c¢) and (3.31d).
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Contours of <A | 2,

. X 3

Fig. 3 Contours of Squeeze parameters versus ¢
and r.

Borders of Squeezed States

Fig. 4 The domain of squeezed states (filled with
contours) as separated from de-squeezed states
(white).

Furthermore, Figure 4 shows the domain of
squeezed (AIALZZ) <i versus de-squeezed

(AIALZZ) > i states, respectively, filled in with
color contours, and left blank. The borders
could be explicitly found by solving (3.31c)
and (3.31d) for (AIALZZ) = i. This gives after

simplifications to the fairly
expression

compact

Vol. 4, No. 1, Winter-Spring 2010

et2" = tan? (%) IL=X,9,2 (3.32)

which defines the borders separating the
squeezed and de-squeezed states.

V. CONCLUSIONS

In this paper, we presented new closed-form
expressions for coherent states and squeeze
operators of a generalized harmonic oscillator
potential in three spatial dimensions. We
defined proper creation and annihilation
operators and succeeded in presenting simple
expressions for the corresponding
displacement and squeeze operators.

APPENDIX A: DERIVATION OF WIGNER
FuncTION OF 3D HARMONIC OSCILLATOR
The position representation of |m,n,l) state

3D harmonic oscillator reads:

lpnml(r) = (rlm,n,1)

3 1 K2 % 1,
- x/2n+m+ln!m!l!<7> exp (_EK r )
H,, (kx)H,, (ky)H, (k2) (A1)

Placing the above in the definition of Wigner
function in (2.5) gives:

3
2

Wiy (r, p) = (21lrh>3 2n+m+lln! T <K?2>
[ cton ook

exp (—%KZ |r + %Z|2> H, [K (x - %{x)]

e (5 e (v =3

e+ 36| e (2 -3¢

Hz[ (z+ (z)}—(l 3 LI, 1, (A.2)

I, = 2"+1n' ﬁ f ddy {eXp hprx)

exp [—7<x—%5x ] exp[ % xX+= (x)z]

el ellueles Sl o
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1 K2 r i
b =g [ | ole(~5p6)
2

o[- (r-36) [ew |- (+50) |
TS [ ML

1 KZ 3
IZ 2l+1l' T[ f d(Z exp hPZ{Z)
2

e
[ (50| e (= + 55}

Consider for example the first integral [,. By
changing k{,, = {, we have:

(A.5)

2.2
I = exp(Kx)J e

2n+1n|

{exp (— % - %) H, (rcx - %) H, (Kx
%)

and now by using the algebraic manipulation:

(4.6)

- hipx(x
2 . , 2

=~(%) 25 () - () -G

(zx i fuc) B (%)2

and change of variables ({x +1i ) —>&:

R3¢
(A.7)

exp [—(Kx)z _ (%)2]i oo

2™"n!

Ly = déx

%) n (Kx - S;x
(A.8)

{exp(=gDH, (1ox + & —

+ l%)}

from symmetry of Hermite polynomials we
know that H,,(—¢) = (—1)"H,,(§). So
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exp [—(Kx)2 - (%)2] 1

2™n!

I = Gk

{exp(_fg)Hn (fx - i% + Kx) Hn (’fx - ip_x

—rex)}

Also it is known that:

11 [
T | AR £ + £ + )
= L, (—2§,&,)

where L, is the Laguerre polynomial of order
n. Therefore

(4.10)

I, = (~1)"exp [—W)Z - (%)2]

px 2 2
| {2 [(ﬂ) + (kx) ]}
Repeating the same procedure for /, and I
results in:

(A.11)

Wln,m,l)(r: p) =
(_1)n+m+l

GO

Lo f2[(B2) + o2}

AT
]

APPENDIX B: DERIVATION OF POSITION
PEPRESENTATION OF 3D SQUEEZED STATE

exp [— (%)2 — (Kl‘)z]

(A.12)

From (2.8) and by using the notation of [15]
we can write the 3D displacement operator in
this new form:

D((X) = Dx(ax)ﬁy (ay)Dz (a;)

- i )
D,(a,) = exp (— Elopol) exp(ipo,i)exp(—t00,)

l=x,y,Z (Bl)

where © and 9, are defined in (3.11) and ¢, and
Do, are define above the (3.23). Furthermore as

it is shown in (3.10) 3D squeeze operator can
also be shown to be:
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S(S) = gx(sx)gy(sy)gz(sz)
) 1 .
S,(s) = exp [—slttal +i5sy, (LZ + 0, )]

L=Xx,9,Z (B.2)

Our proposed squeezed state is constructed
from ground state of a 3D harmonic oscillator
(vacuum state) as in (3.20). So its position
representation can be calculated from:

Ysq(r) = (rs, a) = D(a)S(s)(r|0)

3
= 2 2 2
= D(e0)$(s) (%)4 exp —%} (B.3)

From the previously used commutation relation it
is obvious that:

Yo (r) = (l)% [5x(0fx)5x(5x)e><p (_%xz)]

[Dy(“y)ﬁy(sy)e"p (‘ %3’2)]

[B.(a)8, (sexp (52|
Using [15] gives:

(B.4)

D,(a)S,(s)exp (— %LZ)

1 i ,
=C P (— Elopol> exp(i wo,)

ihl>] (B.5)

L=X,Y,2

P [_(‘ o (2916L2 B

which directly results in the
representation of the squeezed state as:

position
1 i _
Wsq(r) = —— exp (‘EFO ) Po) exp(ir - po)
m4C

[ 1
exp |—(x — xg)? —ih
Plmxr o) (Z%sz )]
ex -—( - )2< LI ih )]
p _ Y—=Yo Zgycyz y

[ 1
(7 — 22 _ih
exp| =z~ 7) (292622 l)]
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