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ABSTRACT—A  bi-isotropic magneto-electric
metamaterials is modeled by two independent
reservoirs. The reservoirs contain a continuum
of three dimensional harmonic oscillators,
which describe polarizability and
magnetizability of the medium. The paper
aimed to investigate the effect of
electromagnetic field on bi-isotropic. Starting
with a total Lagrangian and using Euler-
Lagrange equation, researcher could obtain a
guantum Langevin type dissipative equation for
electromagnetic field. Generating functional of
the system is obtained by the path integral
method and based on the perturbative
approach. By generating functional, a series
expansion in terms of susceptibility function of
the bi-isotropic metamaterials is obtained for
correlation function or two-point Green’s
function. In special case, the close relationship
between statistical mechanics and quantum
field theory,which was reflected in the path
integral methods, could obtain free energy of
electromagnetic field for isotropic metamaterial
using two-point Green’s function. As an
example, the Casimir force of two polarizable
metamaterial spheres by Lorentz susceptibilities
was studied. Furthermore, Casimir force of two
polarizable-magnetizable metamaterials was
calculated.

KEYWORDS: Bi-isotropic, Casimir force,
Correlation function, Generation functional,
Metamaterials.

|. INTRODUCTION

Quantum field theory is the quantum
mechanics of continuous system which is fully
developed in quantum electrodynamics. This
theory is considered as the most successful
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theory in physics. It is obvious that the
quantum properties of electromagnetic field
can be influenced by the presence of media [1-
3]. Complex materials and metamaterials have
played a pivotal role in the presence of
electromagnetic fields. One of the properties
that carry media into these classes is magneto-
electric coupling in materials. Such media are
called bi-isotropic metamaterials [4,5].

In this paper, using path integral methods, we
have focused on examining bi-isotropic
electromagnetic metamaterials, which have
been quantized in the presence of the
electromagnetic field. There are many
approaches to quantize electromagnetic field
in the presence of magneto-dielectric materials
[6,7]. One approach is the path integral
method. Path integrals in  quantum
electrodynamic field theory play a much more
important role due to several reasons. They
provide Green’s functions with an easy road to
quantization and expressions, which are
related to many physical quantities [8-10]. In
addition, the close relationship between
statistical mechanics and quantum field theory
is reflected in the path integral methods.
Therefore, in quantum optics there are some
problems that require us to quantize the
electromagnetic field by the path integral
methods such as calculating the Casimir force
[11, 12].

The Casimir energy is the difference between
the energy of the fluctuating field when the
objects are present compared to their removal
to infinity [13, 14].
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In the present work, path integrals is used to
quantize the electromagnetic field in the
presence of bi-isotropic metamaterials and
obtain the two point correlation function of the
electromagnetic field for the first time. In
special case, the Casimir energy of electric
metamaterials in Drude-Lorantz regime is
calculated using two point correlation
function.

In this method, the medium is modeled by two

independent  reservoirs.  Each  reservoir
contains a continuum of three dimensional
harmonic oscillators and the reservoirs

describe the polarizability and magnetizability
of the medium [15, 16].

We start from Lagrangian of the system which
consists of electromagnetic field in the
presence of bi-isotropic metamaterial and
obtain an expansion for the two-point
correlation function in terms of the electric and
magnetic  susceptibility function of the
medium for electromagnetic field. As
examples of applications of these expansions,
we obtain a series expansion of the Casimir
force in the presence of polarizable
metamaterial in Droude-Lorentz regime and
polarizable-magnetizable metamaterials.

Il. ELECTROMAGNETIC FIELD

In this section we introduce Lagrangian of the
system which consists of electromagnetic field
in the presence of bi-isotropic metamaterials.
In this approach, the bi-isotropic material is
modeled by two continuum collection of three
dimensional harmonic oscillators. Therefore,
the total Lagrangian of the system is as follows

L=Lg, +Lrn+Lint (1)

First term in the relation is the electromagnetic
field Lagrangian

B?(x,t)
244,

Lew :%gOEZ(x,t)—

(2)

where E=-0A/dt and B=VxA represent

electric and magnetic field respectively. The
second term in Eq. (1) is lagrangian of the

138

Perturbative Approach to Calculating the Correlation Function ...

medium and the dynamical variables of the
harmonic oscillator labeled by the continuous
parameter @

1 .
L ==[de(X2(x,t) - 0®X2(x, 1))+
o | .

%Idw(Yj (X, = @*Y2(x, 1))

The last term in Eq. (1), Lint, is describing the
interaction between the bi-isotropic magneto-

dielectric metamaterials and the
electromagnetic field which is:
L, :Idwfl(x,w)A(x,t)-Xw(x,t) +
dof, (x,t)AX,1)-Y, (x,t)+
I (4)

Idwgl (X, @)V xAX,1)- X, (xt)+
J‘daog2 (X, @)VxAX1)-Y, (xt)

where fi, gi and i=1, 2 are the coupling
function between the electromagnetic field and
the medium [18]. We can quantize the system
using path integral techniques by the
Lagrangian [19]. An important quantity in the
field theory is the generating functional from
which  n-point  correlation functions is
obtained. Our purpose is to find two-point
correlation functions or Green’s function in
terms of susceptibility of the bi-isotropic
medium.

Using Gaussian Integrals, the free generating
function is found as follows:

W, =N exp[%jd“xjd x'[J.G.O(x—x‘)Jj

i~ij
+ [dod; G (x-x)J; .6, (5)
+_[de "o Co(x=Xx)J"; 6 H

where Ji indicates the presence of the
perturbation. GJ and G are free Green’s

function of the reservoirs and electromagnetic
fields [8],
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1 exp(-io[x-x)
T arn [x=x|
exp(—i a)r]
2
“’——C{sij [1+ii— (6)
or

Arr

C
¢’ (. .3 3¢ 1
T]——;[l-ﬁ-la-wj:‘ﬁ-gé}jéﬁ(r)

The interacting generating functional is
achieved from the free generating functional
using perturbative methods as follows

i ) 1)
W = exp{EJ‘;jllxl:J'da)fl(x,co)@t [%EJ(%E}L
o )
/ "“’fz(x""”t[%—%}[%SJ;J*
o )
J‘dwgl(x,a))v{;é_\]oj.(%ﬁm}

Idwgz(x@w[;%].&%mm[JO’JWJ,&J
()

The two-point correlation function is obtained
by generating functional as follows

SW([3,9,.3, ]

63;(x)0J(x) ®

G;; (X, X") =(-ih)

J=3,=J,,=0

Using the Eq. (7) and some straightforward
calculations, the following expansion for the
electromagnetic Green’s function dyadic in
frequency variable is obtained as:

Gy (X=X, 0) =G’ (x—X',w) +
Id3le°(x—x1,a))a12;(e (@,%,)G° (X, - X', @) +
Id3x2Id3le°(x —x,, @) 7, (@, %,) +
G°(X, = X,, )"y, (0,%,)G° (X, = X', @) +...

[d°%,V, % G® (X=X, 0) 7, (@, %) V; X G° (x, = X', @) +
Id3x2.|‘d3x1Vl x G (X=X, @) 1 (@, %)V, XV, x

G (X, = X,,®) 7, (@,%,)V, xG (X, = X', @) +...+
2Id3x1V1 x G (X — Xy, @) i@ Yo (@,%X,) G (X, — X', @) +
2jd3x2jd3x1c;°(x—xl,m)a)z[;(e(xl,a));(m(xz,w)+
272, (X5, @)V, xG° (X, —X,, @)V, xG°(X, = X', ) +
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+4[d%, [d°%,G° (X=X, @) 10" 7, 0, ®) 10 (%, @) | x
V, xG° (X, —X,, )G’ (X, — X', @) +

4[d*x, [d*,V, x G (X=X, @) [i07, (%, @) 2 (%, @)) ] %
V,xV,xG" (X, —X,,0)G° (X, =X, @) +---

9)

where, y (w,x) are susceptibility functions of

the medium and in terms of coupling function
of electromagnetic field and bi-isotropic
materials are as follows:

f2(x, @)+ £} (X, @)
o? - w° —i0"

PACHD) =ifdw'
&
_ 0t (X, ) + g3 (x, @)
Zn (%) = ﬂojdw 1 0 -’ —ziO+ (10)
Hem (X, 0)) =
[ A0 + (609, (0)

®'? — o —i0"

The partition function of electromagnetic field
in the presence of the medium

isa:jD[A]exp(%J'd“ij, where L is given by
Eq. (2).

If we make a wick’s rotation w=iy, in

frequency space, the action will be Euclidean
and the free energy is given byE=-7/7InZ,
where 7 is the duration of the interaction.
After some straightforward calculation, the
free energy is obtained in terms of green’s
function of interacting electromagnetic field:

E=-k,T itr In[Gey i (X—X,0=iv)] (11)

where v, =27k, T /7 are  Matsubara
frequencies and Kg is Boltzmann’s constant.

I11. QUANTUM DYNAMICS

To show the quantum treatment of
electromagnetic field in the presence of bi-
isotropic metamaterials, we start from the
lagrangian of the system. Using Euler-
Lagrange equation, the equation of motion of
fieldsA, X , and Y, are obtained as below:

o
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A1) _

atZ

iV><V><A(X,t)+$0

Hy

V x[9,(x, @)X, (x,1)]+V x[9,(x, @)Y, (x,1)] - (12)
f,(x, )X, (x,t) =, (X, )Y, (X, 1)

j.(a) (X' t) + wzxw = fl (X’ a))A(X! t) +

9, (X, @)V x A(X,1) (13)
Y, (1) + oY, = f,(x,0)A(X,t) +
0, (% &)V x A(, 1) (14)

The formal solution of the field Egs. (13, 14)
are

X, (%,t) = X (x,0)cos ot+ S"lo“’t X (x,0)
+J.;dt'W{fl(x,a))A(x,t)+ (15)
0, (X, @)V x A(X, t)}
and
Y (%9 =Y, (x0)coswt+ S":)t Y, (%,0) +
j; dt's"“"—g‘t')[ L, o)A+  (16)
g, (X, @)V x A(X, t)}
In this equation, the first term is the

homogeneous solution of Egs. (15) and (16)
and the second term is the inhomogeneous
one. By substituting Egs. (15) and (16) into
Eqg. (12), the Langevin equation is obtained as

[V x (1— X (X, a)))V x A(X, a))}
—Z)—Zz[1+ Zo (X, @) | A(X, ©) = 104,V 1o (X, ) x A(X, @)

= 1V x My (X, @) — o, Py (X, @)
(17)

where P, (x,t) and M, (x,t)are the electric and
magnetic  polarization  noise  densities
associated with absorption, with the causal
behavior of the medium respectively.
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Py (X, 1) =

I:dw{fl(x, a))[Xm(x,O) cosaotr I (x, 0)} +
[0}

f, (x,w){Yw (x.0)cos o+ I Yw(x,O)}}
[0}

(18)
and
M, (x,1) =
j:da){gl(x, w)[xw (x,0)cos wt+ Si';)“’t Xw(x,O)}

+ gz(x,a))[Yw(x, 0)coswt+ Ny (x, 0)}}
w

(19)

We can show that the Green’s function of the
interacting electromagnetic field satisfies

Vx[l—;(m(x,a))]VxG(x—X’,a))—

%[[“ 2.6, IG(X X, @) -

0V 7y (%) X G (XX ) = 3N, PO

The two point correlation function Eq. (9)
satisfied Eq. (20).

V. CASIMIR ENERGY OF
METAMATERIALS

In this section we consider two applications of
the relations which were obtained in the
previous section.In  section 4-1, two
polarizable isotropic medium in the presence
of the electromagnetic fields is investigated. In
section 4-2, Casimir force of two polarizable
and magnetizable medium is calculated.

A. Casimir Force of Polarizable
Metamaterials

We consider an isotropic  polarizable
metamaterial in  the presence  of
electromagnetic field that is a special case of
Eg. (4), s0gi(x,@)=0,(X,®) =f,(x,)=0. The
expansion of free energy in terms of electrical
susceptibility function is obtained using Egs.
(9, 12),
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w o (_1)n+l , ,
E= KTy > [dx - d, x
1=0 n=1
Giiz (iVI;X1_X2) "'Gih(ivl;xn _Xl)x (21)

where in second approximation is

E:—%KBTi”d3xd3x'><

1=0v,v,

G.O.(x—x',iv,)G‘}i (x'—x,ivl)x (22)

1

;(el(ivl,x);(ez(iv,,xl)

At zero temperature, the summation over the
positive integer | is replaced by an integral.
For example, we calculate the free energy of
the electromagnetic field in the presence of
two nanospheres with radii of a and b, the
distance between their centers R>a+b with
susceptibilities  y,(x,w) = .,(w)s(r-a) and
oo (X, ) = 1, (@)5(r'—=b), where r and r' are
radial coordinates in spherical coordinate
system. In this section, homogeneoussingle-
resonance Lorentz-oscillator models is chosen

for materials. Thus, electric response is
o7,

) + @ +y,0
coupling frequency, transverse resonance
frequency  and damping coefficient,
respectively. It is shown in Fig. 1 that the
electrialc part of thepermittivity is negative

for frequencies a, <w< ol +o and the

material acts as a metamaterial in this
frequency.

Z(iw)= , where o, , o, and yare

After some straightforward calculation of free
energy of the system and assuming R>>(a+b),
the Casimir force is obtained as follows:

2

—h 212 a)e
S b J.dv{ — J
r @y +V YV

2 5 4

Wpe 2VR )| 2v 6v
X| ———— [EXP]| — + 23
(a)oze+v2+;/evJ p[ ¢ J)|c°R* 'R @3)

16v°  32v2  36v 18}

TR R SR
c*R* ¢*R® cR® R’
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Fig. 1: Frequency dispersion of the real part of the

electric  permittivity with (real) frequencies.

Parameters are:

Opomy/ Poermy =0-3, Viemy/ @ogemy =0.001 (red curve).

Oyomy ] Pogemy =05, 7(o.my / @oge.my = 0.001 (dashed
CUIve). @, m /@oem =05, 7em/@o@m = 0.1 (dot-
dash curve).
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Fig. 2: Casimir force of two nanospheres as a
function of frequency, for different distance
between sphere centers, R. Parameters are:
Y/ 0,=0.14, w,/,=0.5, y/w,=0.03, o, /0, =25,
, /@, =2.8, b=0.02%, a=0.012
R=al,=ac/w,, a=2 (Green),
a=0.7 (Dot) and «=0.5 (Red).

a=1 (Blue),

In Fig. 2, using Eg. (23), we compare the
Casimir force of two nanospheres for
homogeneous media, all of which can be
considered as a function of frequency for
different distance R. The Casimir energy
between two nanospheres decreases with
distance increase in the between their centers.
It was expected the Casimir force to be
repulsive for some frequencies that there is
negative refraction, but Fig. 2 illustrates the
finding for two nanospheres: attractive
Casimir forces for all center separations for all
homogeneous media. The reason may be due
to the elimination of magnetic permeability in
our calculation in this example. In the next
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example, the magnetic permeability is exerted
in the calculation.

B. Casimir Force in Polarizable-
Magnetizable Metamaterials

In this section, the magnetic permeability is
exerted in the calculation. We consider two
polarizable and magnetizable medium, so in
Eq. (4), 9,(x,0)=f,(x,w)=0. The system
composed of two bodies with volumes Vi and
V2 and the susceptibilities y, and 4 . The first

relevant nonzero term for the free energy of
the system is

E :—kBTiL J.V d*x,d°%,V, xG§ (X, —X,, ;)
=0 *V17V2

[Ze (v, X)) 2 (v, Xz)]vz X G(j)i (X, =Xy, 1v;)
(24)

By inserting the Green's function Eq. (9) in to
Eq. (24), we find that:

E- —kBle:: J, I, dxdx,

(25)
)(e(i‘/wxl))(m(ivl’xz))(hem(V|’|X1_X2|)
where we have defined
hem(vl’r):
2v Vv, : 1% 2 Vv, ’
_h Y A4l !
oo ) (4] %) d2) 5| o
8r? r i r? " r Jrr_4

where r=|x, —x,|. After some straightforward

calculation, the free energy is obtained as
below:

E=

3334 [ax, %, Ze (X)) 2 (X;) 27)

1287° X, — %,

The free energy for two spheres with radii of
a and b, the distance between their centers
R>a+b with susceptibilities
Ke (x1)=;(95(r—a) and I (X2)=Zm5(r,_b),
where r and r' are radial coordinates in
spherical coordinate systems, is as follows
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333hy, y,a’b?
_ P

= s 4, 6) (28)

where 4=a/R, b=b/R and

(29)

The Casimir force is as follows

2|2
o 38rzalb o (a.6)-
87R’
333x Thy, y,a’h’
Py
87R’

(30)

a,B)

where

(31)

0.0020
0.0015

T
0.0010 EREEY

W 1 ]
< :‘: " - Y
I, = 0.0005 . N
) el

- 0.0005
-0.0010
-

Fig. 3: Casimir force of two nanospheres as a
function of distance between sphere centers, R.
Parameters are: a=24, b=31,R=al>a+b, where
is 6 from 20, £=u=-1 (dashed), ¢=2, u=-1 (blue),
£=12, u=-12 (dotted), £=12, u=2 (dot-dashed).

In Fig. 3, we compare the Casimir force of two
nanospheres as described by Eq. (30) for
homogeneous media, all as a function of
distance R for different electric permittivity
and magnetic permeability. In the case of
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&= u=-1, electric permittivity and magnetic
permeability are near to the resonance
frequency of the metamaterial, so the Casimir
force is repulsive. In the case ¢=1/2 and

1 =-1/2, the Casimir force is repulsive due to
negative magnetic permeability. In the case
=2 and u=-1, the Casimir force is
attractive, despite magnetic permeability is
negative. The reason may be due to strong
electric permittivity. In the case ¢=1/2 and

wu=2, the Casimir force is repulsive, despite

positive magnetic permeability and electric
permittivity. It is attributed to the strong
magnetic permeability which is shown in
metamaterials.

V. CONCLUSION

The present research investigated the quantum
field theory of bi-isotropic metamaterial in the
presence of electromagnetic fields. Using
generating functional, two-point correlation
function is obtained. Two-point correlation
function or Green’s function is a series
expansion in terms of the susceptibility
function of the medium. An illustrative
example is given, showing the applicability of
the method. Using two-point Green’s function,
the free energy of the system was obtained and
the Casimir energy of polarizable and
magnetizable-polarizable metamaterials were
studied. It was shown that the Casimir force of
two polarizable nanospheres was attractive for
all  frequencies. By exerting magnetic
permeability into calculation, in some cases,
the repulsive casimir force between two
nanospheres was revealed.
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