[ Downloaded from mail.ijop.ir on 2025-11-06 ]

International Journal of Optics and Photonics (IJOP)

Vol. 1, No. 1, Summer 2007

Cavity Solitons in Driven VCSELSs above Threshold

(Invited Paper)
G. Tissoni?, I. Protsenkob®, R. Kheradmand?®©,. F. Prati®, M. Brambilla®, and L. A. Lugiato®

4INFM, Dipartimento di Scienze, Universit'a dell’Insubria, Via Valleggio 11, 22100 Como, Italy.
®Lebedev Physics Institute, Moscow, Russia Scientific Center of Applied Research, JINR, Dubna, Russia
“Center for Applied Physics and Astronomical Research, University of Tabriz, Tabriz, Iran;
YINEM, Dipartimento di Fisica Interateneo, Universita e Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy.

Abstract— CSs have been theoretically predicted and
recently experimentally demonstrated in broad area, vertical
cavity driven semiconductor lasers (VCSELS) slightly below
the lasing threshold. Above threshold, the simple adiabatic
elimination of the polarization variable is not correct, leading
to oscillatory instabilities with a spuriously high critical
wave-number. To achieve real insight on the complete
dynamical problem, we study here the complete system of
equations and find regimes where a Hopf instability, typical
of lasers above threshold, affects the lower intensity branch of
the homogeneous steady state, while the higher intensity
branch is unstable due to a Turing instability. Numerical
results obtained by direct integration of the dynamical
equations show that writable/erasable CSs are possible in this
regime, sitting on unstable background

Keywords: cavity solutions, pattern formation, semiconductor
lasers

I. INTRODUCTION

The investigations in the field of spatial pattern
formation in nonlinear optical systems offer an approach to
parallel optical information processing, by encoding
information in the transverse structure of the field [1]-[3].

The problem of the correlation among different parts of
an optical pattern can be solved by generating spatial
structures which are localized in a portion of the transverse
plane in such a way that they are individually addressable
and independent of one another. Cavity solitons (CSs) are
single-peaked localized structures. They have been
theoretically predicted [4]-[12] and experimentally
observed in several classes of nonlinear resonators.
Experimental observations in macroscopic cavities have
been obtained in photorefractive resonators [13] and lasers
with saturable absorbers [14]; similar phenomena have
been observed in other systems with feedback [15]-[17].

Experimental observation of cavity solitons (CSs) in
semiconductor micro-resonators is an important issue not
only for fundamental physics but also for developing
application-oriented devices. CSs have been recently
experimentally demonstrated in broad area, vertical cavity,
driven semiconductor lasers (VCSELSs) slightly below the
lasing threshold [18]. The device is driven by a broad area,
coherent and stationary holding beam, and is operated
under parametric conditions such that the output is
basically uniform over an extended region. By injecting a
localized laser pulse one can write a CS where the pulse

passes and the CS persists after the pulse, thanks to the
feedback exerted by the cavity. The CSs written in this
way can be erased by injecting again pulses in the
locations where they lie; in most cases, these pulses must
be coherent and out of phase with respect to the holding
beam. It has been observed that when the current injection
level was approximately equal or even slightly above the
lasing threshold, the presence of CSs was not essentially
affected. Therefore, we decided to extend the theoretical
prediction and numerical simulation of such devices above
threshold [19].
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Fig. 1 Turing and Hopf instability domains affecting the
homogeneous steady state Es for the case of simple adiabatic
elimination (rate-equation approximation), for a driven
semiconductor laser above threshold: the Hopf instability
boundary is a vertical line, corresponding to an infinite number
of unstable wave-vectors (K is the wave-vector of the
perturbation). The model adopted here is that of Ref. [19].

In the case of a homogeneously broadened two level
laser, it is well known that the simple adiabatic elimination
of the polarization variable is not correct, leading to
oscillatory instabilities with a spuriously high critical wave
number [20]-[21]. The same happens in the case of a
semiconductor laser with injected signal, when the current
is increased above threshold. In Fig. 1 we show the
instability domains obtained with the rate-equation model
of Ref. 19 when we raise the injected current above the
laser threshold. As a new feature, a Hopf domain appears
above threshold, but it is delimited by a vertical line: this
means that all the wave-vectors are unstable, that is clearly
unphysical. More refined techniques, such as centre
manifold adiabatic elimination, have been introduced in
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the free-running laser case [22], but they can solve only
partially the problem: specifically, they “work™ only for
negative values of the atomic detuning.

To achieve real insight on the complete dynamical
problem, we decided to study the complete system of
equations, by adopting a phenomenological model recently
proposed by Tartwijk and Agrawal [22].

Section 2 is dedicated to the description of the Agrawal
model, Section 3 is devoted to the homogeneous stationary
solutions and the linear stability analysis. In Section 4 we
report the numerical results on Cavity Solitons existence
and on/off switching. Finally, conclusions are presented in
Section 5.

Il. THEMODEL

We consider a broad area semiconductor VCSEL. The
semiconductor micro-resonator is of the Fabry-Perot type,
with a MQW structure perpendicular to the direction z of
propagation of the radiation inside the cavity as in [19].

The model we adopt is a phenomenological model
recently proposed by Tartwijk and Agrawal [22] for the
free-running laser case. It describes a semiconductor laser
with a macroscopic polarization, similar to a simple two
level model (5 wvariables), but containing all the
information concerning the physics of semiconductors.
Dynamical equations can be cast in the following form:
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Where E, P and N are the normalized electric field,
macroscopic  polarization  and  carrier  density
respectively, ¥ is the cavity damping constant, y, is the

polarization decay rate, and y, is the carrier non-radiative
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parameter, with @, being the frequency of the holding

recombination rate. is the cavity detuning

field and o, the longitudinal cavity frequency closest to

@®,. The transverse Laplacian, defined as usual as
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V| =—+—, represents diffraction in Eq. (1), and
ox* oy

carrier diffusion in Eq. (3), through the diffraction and

diffusion parameters a and d, respectively. The parameter

E, is the normalized injected field (taken real and positive

for definiteness), j is the normalized injected current, C is

the bistability parameter, and « is the linewidth

enhancement factor.

This model is characterized by the presence of an
“effective” damping T'(N) and detuning A(N) in the
macroscopic polarization equation. They depend on N and
frequency, and by adopting a phenomenological approach,
we assume ['(N)+iA(N)=4.2(N +1)—i12.2, as in [24].

For a detailed derivation of the dynamical equations
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(especially of Eq. (2)), see [23] and [24].

It is important to notice that if the polarization variable
is adiabatically eliminated and its stationary value Pg is
substituted in Egs. (1) and (3), one gets exactly the model
of Ref. [19].

I11. LINEARSTABILITY ANALYSISOF THE
HOMOGENEOUS STEADY STATE

We now approach the complete model described by the
three space-time dependent PDEs (1), (2), and (3). The

homogeneous solution (ES,PS,NS) is obtained, as usual,

by setting equal to zero all the temporal and spatial
derivatives. We obtain:
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Fig. 2 (a) Homogeneous stationary state: intracavity field
amplitude |[ES| as a function of the injected holding beam
amplitude EI . The solid line portion of the S-curve is stable, the
dashed line portion is unstable for Turing instability, the dotted
line portion is unstable for Hopf instability. Symbols correspond
to maximum intensity of patterns obtained by numerical
simulations, displayed in the squares (honeycombs and CSs in
this case). In (b) the Hopf and Turing domains affecting the
stationary state are displayed in the plane (|ES|, K), where K is
the wave-vector of the perturbation. The values of |[ES| for which
there exist values of K inside the domains are unstable.
Parameters are: C=0450=-2,a=5

j=1222, d=0.052, 7,/y, =0.0001, and x/y, =0.01

In order to determine the threshold value j, and the

laser frequency in absence of the injected field (free
running regime) and in the plane-wave approximation we
must set E, =0 in the stationary equations of the model
and consider the point where the nontrivial stationary
solutions gives|ES| =0. We obtain:

. 1
Jn = Ea (7)
0=-a. ®)

The calculation of |ES| vs. E, curve is obtained by
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varying |E3| as a free parameter. It turns out that,

depending on the choice of the parameters, it can be S-
shaped, as in the case displayed in Fig. 2 (a).

We then study the instabilities of the homogeneous
steady state, which give rise either to another
homogeneous state (plane-wave instability, PWI) or to a
spatially modulated pattern (modulational instability, MI).
To this aim, we perform the usual linear stability analysis
of the system, by studying the response of the system to
small spatially modulated fluctuations around the
homogeneous solution

We obtain a fifth-order characteristic equation because
we have five independent variables, that are the electric
field and material polarization, their complex conjugates,
and the carrier density. The characteristic equation reads:
A+l +al +al +al+a, =0, 9)

where the coefficients a,,i =0,1,2,3,4depend on the
system parameters , 7, 7,, ¢, @ },C,E,;,d,A,I"and on

the modulus square K?* of the transverse wave-vector.
Let us fix all the values of the parameters with the
exception of E, ; instead of E, , it is more convenient to

consider the stationary Value|ES| , because E, is a single-
valued function of |ES|, whereas |ES| is, in general, a
multi-valued function of E, . In this way, the coefficients
a, (i=0,1,...,4) are functions of the transverse wave-vector
K and of

E5|. We want to find the boundaries of the
stability domains in the plane (]ES , K|)

The boundary of the Turing domain, corresponding to a
stationary instability (real eigenvalue), is assigned by the
condition A =0 with A real, which is in turn equivalent
toa, =0.

The boundary of the Hopf domain is assigned by the
condition A=iv. By substituting this expression in the
characteristic Eq. (9) and after some simple algebra, we
obtain the following stability boundary:

_(a4a1 _ao)2+(a4az_az)(a|az_aoas):0- (10)

We explored different parametric regimes and found
that the Hopf instability, typical of lasers above threshold,
affects only the lower intensity branch of the homogeneous
steady state, while the higher intensity branch is affected
by a Turing instability, as it is shown in Fig. 2.

Parameters were chosen according to our previous
studies on the same kind of micro-resonators, below
threshold. As in [19] we set C =45, u=-2, =5, and
d =0.052 . The injected current is considered around 10%
above threshold, that in this case is j,, =1.111. As for the
decay rates, typical values for semiconductors are
7' =100fs for the polarization decay time, yH" =1ns for

carrier non-radiative recombination time and x =10 ps for
the cavity photon lifetime. We scale time in unit of y ' and
the spatial variables by the diffraction length \/5 , with
a=20um.

The Hopf instability is characterized by a very high (but
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finite) critical wave-number (see Fig. 2 (b)). It is worth
noting that this critical wave-number has the same value as
that destabilizing the trivial solution for the free-running
laser case (no injection). In Fig. 3 we show the Hopf
instability domain of the trivial homogeneous solution for
E, =0, in the plane (j,K), where j is the injected current.
Two thresholds can be individuated: one is the plane-wave
threshold j,, =1.111, or the laser threshold in absence of

diffraction, and it is given by the intersection with the X -
axis. The other one, that is lower for this parameter choice
(j, =0.843), is characterized by a critical wave-vector

K different from zero (K = 26.6), corresponding to an
off-axis emission (traveling wave, TW) [20]-[21].
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Fig. 3 Hopf instability domain for the case of a free-running
laser, plotted in the plane (j,K), where j is the normalized injected
current. In this case no field is injected, and the emitted
frequency ®o is such that @ = —a . The other parameters are as in
Fig. 2. Two different thresholds can be individuated: the plane—
wave threshold j, =1.111, that is the laser threshold in absence
of diffraction (it corresponds to K =0), and the TW threshold
[20] ju, =—0.843, that is lower for this parameter choice,

corresponding to K, =-26.6 .

Coming back to the case with injected signal, we
decided to reduce the injected current below the plane-
wave threshold indicated by Eq. (7), and found that the
Hopf domain survives (without any intersection with the x-
axis, but keeping the same critical wave-vector K. =26.6)

until the other threshold j,, is reached (see Fig. 4).

It is worth noting that this is a feature related to the
consideration of the polarization dynamics: in the rate
equation approximation no Hopf instability was found
below the plane-wave threshold j,. The rate equation

approximation fails therefore to describe correctly the
system dynamics, when diffraction is taken into account.
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Fig. 4 Hopf instability domains for different values of the
injected current j ranging from j=1.222 j (the largest domain)
to j =0.845 (the smallest domain): the value of the critical
wave-vector K =-26.6 remains fixed. The Hopf domain
vanishes for j < j,, = 0.843 . The other parameters are as in
Fig. 2.

The critical wave-number characterizing the Hopf
instability is strongly dependent on the ratio between the
temporal parameters. In Fig. 5 we show the Hopf domain
for three different values of the ratios y,/y, and x/y, .

The instability threshold for |Es|on the right remains

fixed, but the value of the critical wave-vector K becomes
smaller and smaller if the polarization dynamics is
artificially slowed down. The homogeneous steady state
and the Turing domain remain unchanged.
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Fig. 5 Hopf instability domains for different values of y, / 7.

and «/y, : the value of |ES| for which the steady state becomes

unstable remains fixed, but the critical wave-vector K¢ becomes
smaller and smaller if the polarization decay rate y L is decreased
(7, is indicated as yp in the figure). The other parameters are as
in Fig. 2.

IV. NUMERICAL RESULTS

We have performed the numerical integration of Egs.
(1)-(3) by using a split-step method with periodic
boundary conditions. This method consists in separating
the algebraic and the Laplacian terms in the right-hand side
of Egs. (1)-(3): the algebraic part is integrated using a
Runge-Kutta algorithm, while for the Laplacian operator a
2-D FFT routine is adopted [25]. This implies that the
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number of points for each side of the grid must be a power
of 2, and we mostly assumed a 64 x 64 grid.

The numerical integration of the complete problem is
very demanding for the computational time required,
because of the three very different time-scales involved,
spanning over 4 orders of magnitude. Furthermore, for
realistic values of the temporal parameters, the critical
spatial wave-vector of the Hopf instability is very large
(KC ~ 26.6), thus requiring a small space—step (that is, the

distance between two neighboring points in the grid) to be
able to resolve the spatial scale of the patterns.

Moreover, the algorithm converges only if the relation
2
a< &T holds, where &t is the time—step and &5 is the

space—step, used in the numerical simulations. In order to
ensure proper stability and convergence of the algorithm,

we chose a time-step &t~107~ and a space-step & of

0.2-0.3.

Extended numerical results obtained by direct
integration of the dynamical equations (1)-(3) show that
stable CSs are possible in this regime, even if they sit on
an unstable background (see Fig. 6). They can be obtained
starting from a patterned initial condition (as the
honeycombs in Fig. 2 (a)), by reducing the input field
amplitude.

Fig. 6 Intracavity field amplitude profile in the case of one (a) or
several (b) CSs: they sit on unstable background. Parameters are
as in Fig. 2.

The soliton peak intensity turns out to be almost
constant, while the background is rapidly oscillating (see
Fig. 7).
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Fig. 7 Temporal behavior of field amplitude (a) and phase (b) of
the background and CS peak.

Despite the instability affecting the background, it turns
out to be perfectly possible to write and erase CSs in the
usual manner. A writing beam (WB) is injected into the
cavity, with the same phase as the holding field, for a
certain time (ranging from half to several nanoseconds),
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then it is removed. The CS grows up and remains fixed at
the location where the WB was injected. There is a good
tolerance with respect to the WB phase: it is possible to
excite CSs with phase ranging from 0 to almost 7/2. To

erase CSs, we proceed in the usual way: the WB is injected
again at the CS position, but with an opposite phase with
respect to the holding beam. The CS disappears and it
remains off also when the erasing beam is removed.

V.CONCLUSION

We studied here the transverse dynamics of a driven
broad-area VCSEL above threshold, where dynamical
instabilities take place and the rate-equation approximation
fails to correctly describe the system dynamics in presence
of diffraction. We therefore considered also the material
polarization dynamics, by using a model introduced by
Agrawal, characterized by 5 dynamical equations, similar
to a simple two level model but containing all the
information concerning the physics of semiconductors.

We studied the homogeneous stationary state and their
instabilities, both stationary (Turing) and dynamical
(Hopf). We found some parametric regimes where the
homogeneous steady state is bistable, with the lower
branch unstable for a Hopf instability, and the upper
branch unstable for Turing instability.

When the dynamical equations are integrated
numerically, patterns can be obtained for higher input field
intensities, where the steady state is affected by a Turing
instability. Cavity solitons are also possible, but they are
sitting on a background that is dynamically unstable. CSs
intensity and phase are basically constant, while the
background is rapidly oscillating.

Despite the instability affecting the background, CSs
can be written and erased in the usual way, by means of
writing and erasing beams.

Therefore CSs result to be robust structure and possible
candidates for optical information treatment also in
VCSELS above threshold, where a larger power of
emission is available.
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