1. E.T. Jaynes and F.W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser," Proc. IEEE, Vol. 51, no. 1, pp. 89-109, 1963. [
DOI:10.1109/PROC.1963.1664]
2. T.R. Gentile, B.J. Hughey, D. Kleppner, and T.W. Ducas, "Experimental study of one-and two-photon Rabi oscillations," Phys. Rev. A, Vol. 40, no. 9, pp. 5103-5115, 1989. [
DOI:10.1103/PhysRevA.40.5103] [
PMID]
3. H. Moya-Cessa, V. Bužek, M. Kim, and P. Knight, "Intrinsic decoherence in the atom-field interaction," Phys. Rev. A, Vol. 48, no. 5, pp. 3900-3905, 1993. [
DOI:10.1103/PhysRevA.48.3900] [
PMID]
4. A. Joshi and M. Xiao, "Atomic-coherence effect on the Jaynes-Cummings model with atomic motion," J. Opt. Soc. Am. B, Vol. 21, no. 9, pp. 1685-1692, 2004. [
DOI:10.1364/JOSAB.21.001685]
5. J.H. Eberly, N. Narozhny, and J. Sanchez-Mondragon, "Periodic spontaneous collapse and revival in a simple quantum model," Phys. Rev. Lett., Vol. 44, no. 20, pp. 1323-1326, 1980. [
DOI:10.1103/PhysRevLett.44.1323]
6. G. Rempe, H. Walther, and N. Klein, "Observation of quantum collapse and revival in a one-atom maser," Phys. Rev. Lett., Vol. 58, no. 4, pp. 353-356, 1987. [
DOI:10.1103/PhysRevLett.58.353] [
PMID]
7. M.O. Scully and M.S. Zubairy, Quantum Optics, ed: American Association of Physics Teachers, 1999. [
DOI:10.1119/1.19344]
8. M.S.Z.P. Meystre, "Squeezed states in the Jaynes-Cummings model," Phys. Lett. A, Vol. 89, no. 8, pp. 390-392, 1982. [
DOI:10.1016/0375-9601(82)90330-9]
9. P. Aravind and G. Hu, "Influence of initial conditions on squeezing and anti-bunching in the Jaynes-Cummings model," Phys. B+ C, Vol. 150, no. 3, pp. 427-439, 1988. [
DOI:10.1016/0378-4363(88)90085-X]
10. S.J. Phoenix and P. Knight, "Establishment of an entangled atom-field state in the Jaynes-Cummings model," Phys. Rev. A, Vol. 44, no. 9, pp. 6023-6029, 1991. [
DOI:10.1103/PhysRevA.44.6023] [
PMID]
11. M. Tavis and F.W. Cummings, "Exact solution for an N-molecule-radiation-field Hamiltonian," Phys. Rev., Vol. 170, no. 2, pp. 379-984, 1968. [
DOI:10.1103/PhysRev.170.379]
12. R.-h. Xie, G.-o. Xu, and D.-h. Liu, "Study of squeezing properties in a two-level system," Aust. J. Phys., Vol. 48, no. 6, pp. 907-924, 1995. [
DOI:10.1071/PH950907]
13. P. Gora and C. Jedrzejek, "Nonlinear jaynes-cummings model," Phys. Rev. A, Vol. 45, no. 9, pp. 6816-6829, 1992. [
DOI:10.1103/PhysRevA.45.6816] [
PMID]
14. G. Agarwal and K. Tara, "Nonclassical properties of states generated by the excitations on a coherent state," Phys. Rev. A, Vol. 43, no. 1, pp. 492-497, 1991. [
DOI:10.1103/PhysRevA.43.492] [
PMID]
15. S. Esmail, A. Salah, and S.S. Hassan, "Statistical aspects and dynamical entanglement for a two-level atom moving on along cavity length of x-direction: atomic position distribution," Braz. J. Phys., Vol. 49, pp. 438-448, 2019. [
DOI:10.1007/s13538-019-00650-z]
16. A. Vaglica, "Jaynes-Cummings model with atomic position distribution," Phys. Rev. A, Vol. 52, no. 3, pp. 2319-2326, 1995. [
DOI:10.1103/PhysRevA.52.2319] [
PMID]
17. K. El Anouz, A. El Allati, A. Salah, and F. Saif, "Quantum fisher information: probe to measure fractional evolution," Int. J. Theor. Phys., Vol. 59, pp. 1460-1474, 2020. [
DOI:10.1007/s10773-020-04415-2]
18. Z. M. Odibat, "Analytic study on linear systems of fractional differential equations," Comput. Math. Appl., Vol. 59, no. 3, pp. 1171-1183, 2010. [
DOI:10.1016/j.camwa.2009.06.035]
19. N. Abdel-Wahab and A. Salah, "On the interaction between a time-dependent field and a two-level atom," Mod. Phys. Lett. A, Vol. 34, no. 10, pp. 1950081(1-16), 2019. [
DOI:10.1142/S0217732319500810]
20. H. Baghshahi, M. Tavassoly, and A. Behjat, "Entropy squeezing and atomic inversion in the k-photon Jaynes-Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach," Chin. Phys. B, Vol. 23, no. 7, pp. 074203(1-12), 2014. [
DOI:10.1088/1674-1056/23/7/074203]
21. B. Buck and C. Sukumar, "Exactly soluble model of atom-phonon coupling showing periodic decay and revival," Phys. Lett. A, Vol. 81, no. 2-3, pp. 132-135, 1981. [
DOI:10.1016/0375-9601(81)90042-6]
22. M.J. Faghihi, M.K. Tavassoly, and M. Bagheri Harouni, "Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field," Laser Phys., Vol. 24, no. 4, pp. 045202(1-15), 2014. [
DOI:10.1088/1054-660X/24/4/045202]
23. R. Zait, "Nonclassical statistical properties of a three-level atom interacting with a single-mode field in a Kerr medium with intensity dependent coupling," Phys. Lett. A, Vol. 319, no. 5-6, pp. 461-474, 2003. [
DOI:10.1016/j.physleta.2003.10.059]
24. A. Othman and D. Yevick, "The interaction of a N-type four level atom with the electromagnetic field for a Kerr medium induced intensity-dependent coupling," Int. J. Theor. Phys., Vol. 57, no. 1, pp. 159-174, 2018. [
DOI:10.1007/s10773-017-3550-0]
25. H. Baghshahi, M.K. Tavassoly, and A. Behjat, "Dynamics of entropy and nonclassicality features of the interaction between a⋄-type four-level atom and a single-mode field in the presence of intensity-dependent coupling and kerr nonlinearity," Commun. Theor. Phys., Vol. 62, no. 3, pp. 430(1-14), 2014. [
DOI:10.1088/0253-6102/62/3/22]
26. G.S. Agarwal, Quantum optics. Cambridge University Press, 2012. [
DOI:10.1017/CBO9781139035170]
27. R.L. de Matos Filho and W. Vogel, "Nonlinear coherent states," Phys. Rev. A, Vol. 54, no. 5, pp. 4560-4563, 1996. [
DOI:10.1103/PhysRevA.54.4560] [
PMID]
28. V. Man'ko, G. Marmo, E. Sudarshan, and F. Zaccaria, "f-Oscillators and nonlinear coherent states," Phys. Scr., Vol. 55, no. 5, pp. 528-541, 1997. [
DOI:10.1088/0031-8949/55/5/004]
29. J. Récamier, M. Gorayeb, W. Mochán, and J. Paz, "Nonlinear coherent states and some of their properties," Int. J. Theor. Phys., Vol. 47, pp. 673-683, 2008. [
DOI:10.1007/s10773-007-9491-2]
30. A. Karimi and M.K. Tavassoly, "Quantum engineering and nonclassical properties of SU (1, 1) and SU (2) entangled nonlinear coherent states," J. Opt. Soc. Am. B, Vol. 31, no. 10, pp. 2345-2353, 2014. [
DOI:10.1364/JOSAB.31.002345]
31. R. Román-Ancheyta, C. González Gutiérrez, and J. Récamier, "Photon-added nonlinear coherent states for a one-mode field in a Kerr medium," J. Opt. Soc. Am. B, Vol. 31, no. 1, pp. 38-44, 2014. [
DOI:10.1364/JOSAB.31.000038]
32. F. Soto-Eguibar, B. Rodríguez-Lara, and H. Moya-Cessa, "Phase state and related nonlinear coherent states," J. Opt. Soc. Am. B, Vol. 31, no. 6, pp. 1335-1338, 2014. [
DOI:10.1364/JOSAB.31.001335]
33. O. Abbasi and M.K. Tavassoly, "Superpositions of the dual family of nonlinear coherent states and their non-classical properties," Opt. Commun., Vol. 283, no. 12, pp. 2566-2574, 2010. [
DOI:10.1016/j.optcom.2010.02.040]
34. O. Abbasi and M.K. Tavassoly, "Superposition of two nonlinear coherent states π/2 out of phase and their nonclassical properties," Opt. Commun., Vol. 282, no. 18, pp. 3737-3745, 2009. [
DOI:10.1016/j.optcom.2009.06.036]
35. S. Sivakumar, "Studies on nonlinear coherent states," J. Opt. B: Quantum Semiclass. Opt., Vol. 2, no. 6, pp. R61-R75, 2000. [
DOI:10.1088/1464-4266/2/6/02]
36. O. de los Santos-Sánchez and J. Récamier, "The f-deformed Jaynes-Cummings model and its nonlinear coherent states," J. Phys. B: At. Mol. Opt. Phys., Vol. 45, no. 1, pp. 015502(1-9), 2011. [
DOI:10.1088/0953-4075/45/1/015502]
37. O. Abbasi and A. Jafari, "Dynamics of entropy and quantum statistical properties of the field in the interaction of a single two-level atom with a superposition of nonlinear coherent states in the framework of f-deformed Jaynes-Cummings model," Opt. Quantum Electron., Vol. 48, no. 9, pp. 1-28, 2016. [
DOI:10.1007/s11082-016-0700-1]
38. O. Abbasi and A. Jafari, "Four-photon nonlinear coherent states," J. Mod. Opt., Vol. 64, no. 1, pp. 32-45, 2017. [
DOI:10.1080/09500340.2016.1206216]
39. A. Othman and D. Yevick, "Quantum properties of the superposition of two nearly identical coherent states," Int. J. Theor. Phys., Vol. 57, no. 8, pp. 2293-2308, 2018. [
DOI:10.1007/s10773-018-3752-0]
40. A. Dehghani, B. Mojaveri, M. Aryaie, and A. Alenabi, "Superposition of two-mode "Near" coherent states: non-classicality and entanglement," Quantum Inf. Process., Vol. 18, pp. 1-16, 2019. [
DOI:10.1007/s11128-019-2216-7]
41. A. Othman, "Teleportation via the entangled derivative of coherent state," Quantum Inf. Comput., Vol. 19, no. 1&2, pp. 14-22, 2018. [
DOI:10.26421/QIC19.1-2-2]
42. A. Othman, "The Mth Coherent State," Int. J. Theor. Phys., Vol. 58, no. 8, pp. 2451-2463, 2019. [
DOI:10.1007/s10773-019-04136-1]
43. A.A. Othman, "Mth Coherent State Induces Patterns in the Interaction of a Two-Level Atom in the Presence of Nonlinearities," Int. J. Theor. Phys., Vol. 60, no. 4, pp. 1574-1592, 2021. [
DOI:10.1007/s10773-021-04780-6]
44. S.M. Heydari, A. Jafari, and O. Abbasi, "The Mth nonlinear coherent states," Phys. Scr., Vol. 99, no. 4, pp. 045115(1-12), 2024. [
DOI:10.1088/1402-4896/ad2e65]
45. R. Roknizadeh and M. Tavassoly, "The construction of some important classes of generalized coherent states: the nonlinear coherent states method," J. Phys. A: Math. Gen., Vol. 37, no. 33, pp. 8111(1-18), 2004. [
DOI:10.1088/0305-4470/37/33/010]
46. V.I. Man'ko, G. Marmo, and F. Zaccaria, "Moyal and tomographic probability representations for f-oscillator quantum states," Phys. Scr., Vol. 81, no. 4, pp. 045004(1-7), 2010. [
DOI:10.1088/0031-8949/81/04/045004]
47. L. Mandel and E. Wolf, Optical coherence and quantum optics. Cambridge university press, 1995. [
DOI:10.1017/CBO9781139644105]
48. R. Puri and G. Agarwal, "Finite-Q cavity electrodynamics: Dynamical and statistical aspects," Phys. Rev. A, Vol. 35, no. 8, pp. 3433-3449, 1987. [
DOI:10.1103/PhysRevA.35.3433] [
PMID]
49. O. De los Santos-Sanchez and J. Récamier, "Nonlinear coherent states for nonlinear systems," J. Phys. A: Math. Theor., Vol. 44, no. 14, pp. 145307(1-18), 2011. [
DOI:10.1088/1751-8113/44/14/145307]
50. L. Mandel, "Sub-Poissonian photon statistics in resonance fluorescence," Opt. lett., Vol. 4, no. 7, pp. 205-207, 1979. [
DOI:10.1364/OL.4.000205] [
PMID]
51. R.J. Glauber, "The quantum theory of optical coherence," Phys. Rev., Vol. 130, no. 6, pp. 25292539, 1963. [
DOI:10.1103/PhysRev.130.2529]
52. C.M. Caves and B.L. Schumaker, "New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states," Phys. Rev. A, Vol. 31, no. 5, pp. 3068-3092, 1985. [
DOI:10.1103/PhysRevA.31.3068] [
PMID]
53. C. Hong and L. Mandel, "Higher-order squeezing of a quantum field," Phys. Rev. Lett., Vol. 54, no. 4, pp. 323-325, 1985. [
DOI:10.1103/PhysRevLett.54.323] [
PMID]
54. M. Hillery, "Squeezing of the square of the field amplitude in second harmonic generation," Opt. Commun., Vol. 62, no. 2, pp. 135-138, 1987. [
DOI:10.1016/0030-4018(87)90097-6]
55. C.H. Bennett, "Quantum information and computation," Phys. Today, Vol. 48, no. 10, pp. 24-30, 1995. [
DOI:10.1063/1.881452]
56. C.H. Bennett and D.P. DiVincenzo, "Quantum information and computation," Nature, Vol. 404, no. 6775, pp. 247-255, 2000. [
DOI:10.1038/35005001] [
PMID]
57. R. Naderali, H. Motiei, and A. Jafari, "Creation of entangled W states of four two-level atoms in a cavity via quadrapod adiabatic passage," Opt. Quantum Electron., Vol. 45, pp. 97-103, 2013. [
DOI:10.1007/s11082-012-9606-8]
58. G. Alber Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, and A. Zeilinger, Quantum information: An introduction to basic theoretical concepts and experiments. Springer, 2003.
59. A. Mortezapour, M. Mahmoudi, and M. Khajehpour, "Atom-photon, two-mode entanglement and two-mode squeezing in the presence of cross-Kerr nonlinearity," Opt. Quantum Electron., Vol. 47, no. 7, pp. 2311 2329, 2015. [
DOI:10.1007/s11082-014-0109-7]
60. A. Wehrl, "General properties of entropy," Rev. Mod. Phys., Vol. 50, no. 2, pp. 221-260, 1978. [
DOI:10.1103/RevModPhys.50.221]
61. H. Araki and E.H. Lieb, "Entropy inequalities," Commun. Math. Phys., Vol. 18, no. 2, pp. 160-170, 1970. [
DOI:10.1007/BF01646092]
62. A. Vidiella-Barranco, H. Moya-Cessa, and V. Bužek, "Interaction of Superpositions of Coherent States of Light with Two-level Atoms," J. Mod. Opt., Vol. 39, no. 7, pp. 1441 1459, 1992. [
DOI:10.1080/09500349214551481]