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ABSTRACT— In this paper, we investigate the 

usage of machine learning in the detection and 

recognition of double stars. To do this, numerous 

images including one star and double stars are 

simulated. Then, 100 terms of Zernike expansion 

with random coefficients are considered as 

aberrations to impose on the aforementioned 

images. Also, a telescope with a specific aperture 

is simulated. In this work, two kinds of intensity 

are used, one is in-focus and the other is out-of-

focus of the telescope. After these simulations, a 

convolutional neural network (CNN) is 

configured and designed and its input is 

simulated intensity patterns. After learning the 

network, we could recognize double stars at 

severe turbulence without needing phase 

correction with a very high accuracy level of 

more than 98%. 

KEYWORDS: Aberration, Turbulence, Double 

Stars, Convolutional Neural Network, Machine 

Learning. 

I.  INTRODUCTION 

In astronomy, a pair of stars that are close 

enough together from the point of view on Earth 

is called a double-star. The recognition of these 

types of star systems is important, because 

studying their properties including mass, 

motions, and other parameters could give us 

some useful information for further studies. 

Indeed, double stars are a set of two stars that 

are located at a very small distance from each 

other. However, this recognition encounters 

some challenges. Due to the turbulence, the 

earth's atmosphere causes a degradation in the 

quality of images taken from the earth. Various 

models such as Kolmogorov, Tatarskii, and 

Von-Karman have been introduced to express 

the atmospheric turbulence[1]. Atmospheric 

turbulence is caused by random temperature 

changes. As a result, it causes random 

variations of the refractive index of the air. 

These variations happen both spatially and 

temporally. Therefore, when optical waves are 

propagating through the atmosphere, they 

encounter these variations. Hence, some 

mathematical models were introduced to 

investigate the changing refractive index of air. 

The main equation of light propagation in 

turbulent environments also follows the wave 

equation as [1]: 

[∇2 + 𝑘2𝑛2(𝑟)]𝑈(𝑟) = 0, (1) 

where 𝑟  represents the radial coordinate, 𝑘  is 

wavenumber, 𝑛 is the refractive index, and 𝑈 is 

the electric or magnetic field of light. The 

turbulence impacts the wavefront of light, 

therefore it can be said that the wavefront loses 

its ideal form and involves some aberrations. 

One of the ways to correct the wavefront and, 

as a result, get better images is adaptive optics. 

Primary setups of adaptive optics utilized 

wavefront sensors. The most famous wavefront 

sensor is Shack-Hartman. Sensor-based 

wavefront sensing has some limitations [2], 

such that in recent years, adaptive optics 

techniques without using wavefront sensors 

have been introduced[3]-[8]. In this paper, we 

have introduced a method based on machine 

learning to be able to directly detect double 
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stars without the need to identify the distorted 

wavefront and methods of adaptive optics. 

In the last decade, usage of Machine Learning 

(ML) as a branch of Artificial Intelligence (AI) 

has been greatly expanded in various fields. The 

basic calculations in this area is related to 

connections of artificial neurons. A single 

neuron with some input and an output is shown 

in Fig. 1. The connection of some neurons in 

some layers is done via some weights and 

establishes an Artificial Neural Network 

(ANN) which has an input layer, an output 

layer, and one or more hidden layers. 

 
Fig. 1. Input and output of a single artificial neuron. 

As can be seen in Fig. 1, input (𝑥𝑖) and weights 

(𝑤𝑖) are multiplied element-wise and the result 

is passed to a function (𝑓) named “activation 

function”. Therefore, a single neuron has an 

output (𝑦) and the relationship between input 

and output is achieved by: 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 ). (2) 

This output can be considered as one input to 

the next layer neurons. Fig. 2, shows some 

neurons connected to each other in layers. 

 
Fig. 2. Input, hidden, and output layer of a typical 

artificial neural network with some neurons in each 

layer. 

In Fig. 2, a typical artificial neural network with 

some neurons in each layer is shown. The first 

layer is usually called the input layer which gets 

the input data. The final layer is called the 

output layer which usually has some definite 

number of neurons depending on the problem. 

Every layer between the input and output layers 

is called the hidden layer. This type of neural 

network is called a Multi-Layer Perceptron 

(MLP). Peterson et al. explained in details the 

basics and concepts of ANNs [9]. 

It should be noted that MLP is not suitable for 

deep layers with a large number of neurons in 

layers. When the input data to the network are 

two-dimensional arrays like images, overfitting 

is a phenomenon that can happen. Overfitting is 

one of the modeling errors in data science. This 

error occurs when the model has retained the 

features of the training data instead of learning 

it, i.e., it has been overtrained on it; As a result, 

the model will have the generalization problem 

and is only useful for the training dataset and 

not on test data (after learning) that has not yet 

seen. To avoid this, deep learning models have 

been introduced which can have deeper layers 

of neurons. One of the most well-known deep 

learning models is Convolutional Neural 

Network (CNN) which has a general 

configuration as presented in Fig. 3. 

 
Fig. 3. The typical conceptual scheme of a CNN. 

There could be different layers in this 

configuration, but the two main layers are 

convolution and pooling. The purpose of these 

two layers is to extract features and reduce the 

size of input images. Two-dimensional 

convolution is defined as: 

(𝐼 ∗ 𝑓)(𝑚, 𝑛) = ∑ 𝐼(𝑚 − 𝑖, 𝑛 − 𝑗)𝑓(𝑖, 𝑗),𝑖,𝑗  (3) 

Where I and f represent the image and filter. In 

the convolution operation, filters slide on 

image, and the element-wise multiplication is 

done and the result is an image that is called a 

feature map. 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

25
-0

6-
08

 ]
 

                             2 / 10

https://mail.ijop.ir/article-1-512-en.html


International Journal of Optics and Photonics (IJOP) Vol. 16, No. 2, Summer-Fall, 2022 

123 

Another important operation in feature 

extraction is called pooling which is related to 

dimension reduction. The dimension of an 

image after this operation is determined by: 

size = (⌊
𝐼𝑥−𝑝𝑥

𝑠𝑥
⌋ + 1) × (⌊

𝐼𝑦−𝑝𝑦

𝑠𝑦
⌋ + 1), (4) 

in which ⌊ ⌋ represents a floor function, 𝐼𝑥 , 𝐼𝑦 

are input shape, 𝑝𝑥  , 𝑝𝑦  are dimension of 

pooling kernel and 𝑠𝑥 , 𝑠𝑦  are strides, all in 𝑥 

and 𝑦 directions respectively. One of the well-

known operations in pooling is named “max 

pooling” in which the maximum value of the 

array in each block of image is extracted. In Fig. 

4, the functionality of max pooling is shown. 

 
Fig. 4. A typical example of max pooling Operation, 

with 𝑠𝑥 = 2,  𝑠𝑦 = 1. 

After feature extraction steps, all of the data are 

flattened as input to the fully connected layers 

(are called dense layers as well) which are 

regular MLP layers. Finally, the last step is 

considering some neurons as the output layer. 

LeCun introduced the CNN and explained its 

properties including convolution and max 

pooling operations [10]. 

Nevertheless, there are many methods to use 

machine learning in different areas. Each of 

them may have different uses for different types 

of data. However, when we are dealing with 

images, we should use an algorithm that has the 

potential of feature extraction. The best option 

for this aim is CNN which is explained above. 

II. METHOD AND SIMULATION 

In this paper, we have investigated a method to 

distinguish double stars from single stars using 

deep learning. In the different conditions of 

atmospheric turbulence, it is not 

straightforward to accurately accomplish this 

kind of recognition in the imaging system 

without using adaptive optics techniques. But 

we have introduced a deep learning model that 

can do that. This method is straightforward and 

intelligent. The diagnosis can be done with high 

accuracy without any need to phase correction 

setups. It needs a big set of images with proper 

labels. Indeed, each image has a label (or class) 

which is either “1” or “2”. Label “1” indicates 

that there is one star in the distorted image. 

Likewise, the label “2” indicates that there are 

two stars in the distorted image. The inputs are 

simulated images of stars in turbulence 

conditions. Therefore, the first step is 

simulating the ground-truth images (aberration-

free) of single and double stars that can be seen 

in Fig. 5.  

 
Fig. 5. Simulation of aberration-free images of (a): 

single star, (b) double-star. 

To simulate the double-star systems, their 

distance from each other must be defined. In 

this paper, the separation of their maximum 

pixel intensity is considered as a parameter. 

This parameter is chosen as a random variable 

by a condition that their maximum intensity 

locations should be greater than 3 pixels and 

fewer than 12 pixels, i.e. 3 < 𝑑 < 12 . 

Moreover, it should be noted that the 

orientation of their position relative to each 

other is chosen as a random variable too. 

Propagation of light through the atmosphere 

degrades these images. The figure below shows 

an example relating to the effect of turbulence 

on the star images in Fig. 6. 

Figure 6 (a), is related to a single star, and Fig. 

6 (b) represents a double-star in the presence of 

aberration. The severe turbulence of the 

atmosphere has made us unable to recognize it 

in normal conditions. To simulate these 

intensity patterns, the parameters in Table 1 

have been used.  
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Fig. 6. Simulation of aberrated images of (a): single 

star, (b): double star, in atmospheric turbulence. 

Table 1. Basic parameters in simulation. 

Parameter Dimension value 

Wavelength (𝜆) [𝜇𝑚] 2.2 

Telescope diameter (𝐷) [𝑚] 10 

Grid size (𝑁) [𝑝𝑖𝑥𝑒𝑙] 128 

Pixel scale [𝑎𝑟𝑐𝑠𝑒𝑐𝑜𝑛𝑑] 0.04 

 

Therefore, the first step is simulating a large 

number of turbulent wavefronts for which we 

use the Zernike expansion. 

𝜑(𝑟, 𝜃) = ∑ 𝑎𝑖𝑍𝑖(𝑟, 𝜃)𝑖 , (5) 

in which 𝑎𝑖  and 𝑍𝑖(𝑟, 𝜃)  are the coefficients 

and polynomials of Zernike expansion, and 

𝜑(𝑟, 𝜃)  is the turbulent wavefront. These 

wavefronts are simulated based on Fourier 

transform [11], and the modified Von-Karman 

turbulence model Error! Reference source 

not found.. 

In many scientific researches, the 

reconstruction of wavefronts is usually done in 

terms of Zernike terms. But, since considering 

Zernike terms in high orders does not cause 

many changes in the wavefront, they might be 

disregarded. A criterion that can be considered 

is the wavefront error. In this work, based on 

experience and several times of trial and error, 

we observed that considering terms higher than 

n=13 (104 terms) does not have a significant 

effect on the wavefront. However, we added 

and highlighted explanations in this regard in 

the text. As an example, the simulation of a 

distorted wavefront at the focal plane of the 

telescope is shown in Fig. 7. 

But for the learning process to be done well, we 

need to have two categories of images. For this 

purpose, a value of the defocus term in Zernike 

expansion is added to the previous defocus term 

for each wavefront. This term is called defocus 

and is defined as: 

𝑍4 = √3(2𝑟2 − 1).  (6) 

In another word, this is equivalent to shifting 

the image plane relative to the focal point. In 

this paper, the amount of defocus is considered 

as 
𝜆

8
∗ 𝑍4, where 𝜆 is the wavelength. It is better 

to have more than one set of images as input, 

because it increases the capability of learning 

process in this problem. Also, due to the 

diversity of turbulent wavefronts, the 

uniqueness of phases in focal plane is not 

guaranteed. Therefore, another set of images in 

a defocused location is helpful.  

 
Fig. 7. An example of distorted wavefront by 

turbulence. 

This is shown schematically in Fig. 8, where 

there are two kinds of image acquisition in the 

simulation. 

 
Fig. 8. Getting in-focus and out of focus images. 

As can be seen in Fig. 8, the incoming distorted 

wavefront to the telescope enters the beam 

splitter and two images could be achieved, one 

in focal plane and one in out of focal plane. 

As an example, the out of focus images 

corresponding to the images in Fig. 6, and the 
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corresponding wavefront in Fig. 7, are shown in 

Fig. 9. 

 
Fig. 9. (a): in-focus, and (b): out of focus, images 

affected by turbulence. 

This procedure is done repetitively and 

thousands of images are generated. Therefore, 

the input includes the distorted intensity 

patterns (images) and the number of stars 

(labels) corresponding to the intensity patterns. 

Fig. 10, shows the sequential procedure of the 

designed CNN. 

 
Fig. 10. Design of the CNN for this paper, with two 

kinds of in-focus and out of focus images as input. 

In this configuration, the dataset which are 

generated based on the method mentioned 

above, enters the first layer of the network. This 

dataset includes both the in focus and out of 

focus intensities. After the feature extraction 

operations all of the data become flattened and 

enter the dense layers. This is called a feed 

forward propagation in which the trainable 

parameters get some values for the first time. 

Based on these weights, the optimization 

algorithm starts to assess the results and some 

values as output are achieved. This process is 

called an “epoch”. This procedure is repeated 

and the weights are updated during the next 

epochs. To this aim, a cost function and an 

optimizer are needed. The optimization process 

is looking for parameters that can minimize the 

cost function. CNN is a branch of supervised 

learning. Thus, both the images and labels, are 

inputs to the network. In this paper, Adaptive 

Moment estimation (ADAM) is used as the 

optimizer. This optimization algorithm is a 

modification to the stochastic gradient descent 

algorithm that has recently been utilized for 

deep learning models in different areas 

including computer vision. The updating the 

weights, based on this algorithm is as follows: 

𝑤𝑡+1 = 𝑤𝑡 − 𝑚�̂� (
𝛼

√𝜈�̂�
+ 𝜀), (7) 

where 𝑤𝑡  and 𝑤𝑡+1 are the weights at times 𝑡 

and 𝑡 + 1, respectively. Also, 

𝑚�̂� =
𝑚𝑡

1−𝛽1
𝑡, (8) 

𝜈�̂� =
𝜈𝑡

1−𝛽2
𝑡, (9) 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) [
𝛿𝐿

𝛿𝑤𝑡
], (10) 

𝜈𝑡 = 𝛽2𝜈𝑡−1 + (1 − 𝛽2) [
𝛿𝐿

𝛿𝑤𝑡
]

2
. (11) 

In these equations, 𝛼 is the learning rate, 𝛽1, 𝛽2 

are decay rates of gradients [12]. 

It is efficient, especially when we are dealing 

with large datasets and many parameters. In 

Adam rather than adapting the learning rate in 

which the average first moment is used, the 

average of the second moments of the gradients 

is considered. Also, the exponential moving 

average of the gradients and square gradients 

are calculated. Also, the Sparse Categorical 

Cross-Entropy is used as the cost function 

which is defined as [14][14]: 

𝐶 = − ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑦�̂�)
𝑁
𝑗=1 , (12) 

in which 𝑦𝑖 and 𝑦�̂� are the actual and predicted 

labels, and N is the number of labels. The 

configuration of designed CNN is presented in 

Table 2. 

As shown in Table 2, size of the images is 

128×128 which is selected based on some trial 

and error to get appropriate images of star 

systems in the presence of aberration. There are 

two convolution layers and two max pooling 

layers. At the first convolution layer, 64 filters 
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with the size 11×11 are considered which can 

extract large-scale features. Also, 64 filters are 

selected to extract as much as convenient 

different features. The result of this operation is 

passed to the max pooling layer where the 

dimension of images can reduce effectively. 

Table 2. Layers of the designed CNN. 

Layer Type Input Size Filter Size Kernels 

1 Input 128×128×2 - - 

2 Convolution 128×128×2 11×11 64 

3 Max pooling 59×59×64 3×3 - 

5 Convolution 29×29×64 5×5 192 

6 Max pooling 29×29×192 3×3 - 

12 Dense 7×7×128 - - 

14 Dense 6272×1 - - 

16 Output N×1 - - 

 

The second convolution layer has 192 filters 

with the sizes of 5×5 which can extract small-

scale features. These two operations are 

repeated and the resulting images enter two 

dense layers with the determined number of 

neurons. In the final layer, two neurons must be 

defined, as there are two labels at most in the 

images. Indeed, the images belong to either a 

single or a double-star. Hence, the final layer 

necessarily has two neurons. 

By doing so, the input dataset is built which 

includes 6000 in-focus and out of focus images. 

III. RESULTS AND DISCUSSION 

The innovation of this work is that there is no 

need to identify the wavefronts and remove the 

aberrations by sensor-less adaptive optics, and 

this diagnosis can be made directly and only by 

using the intensity images in the focal and non-

focal planes. In doing so, the main focus of this 

paper is configuring a CNN in such a way that 

after the learning procedure, it could have 

prediction capability. It means that if a pair of 

intensity patterns that are affected by turbulence 

is given to the network, in the shortest possible 

time it can recognize that this pair of images 

belong to a single or double-star. Fig. 11, shows 

the input and output, before and after the 

learning procedure. 

It should be noted that 80% of the images are 

considered training data and 20% as test data.  

 
Fig. 11. Comparison of input and output for a deep 

learning model, before and after the learning process.  

 
Fig. 12. Accuracy of the CNN in 60 epochs for 

training and validation data. 

Furthermore, 20% of the training data is 

allocated to validation data. After the learning 

process which may take some hours, the 

recognition time was only a few milliseconds 

for any pair of images. Therefore, it can be said 

that this method is one of the best possible 

options to achieve real-time recognition. 

Learning is done in some iterations, named 

“epoch”. The optimization operation in every 

epoch is done based on the train data and the 

cost function. Training accuracy is related to the 

training data that the network is experiencing, 

and validation accuracy is the evaluation of the 

network performance on the validation data 

during the learning process. These two 

accuracies are shown in Fig. 12. 

 
Fig. 13. An example of the CNN evaluation by a test 

data. 

After learning, the evaluation of the network is 

done on the test data in the dataset. It should be 
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emphasized that the test data do not participate 

in learning. The accuracy of this network after 

the end of the learning process has been 98%, 

approximately, which shows the power of the 

designed CNN. Fig. 13, shows an example of 

the test samples which includes an in-focus and 

an out of focus images. These two images 

belong to a double-star which the network 

could detect it correctly. 

As can be seen in Fig. 13, it is not possible to 

recognize the double-star without using the 

phase correction methods. But these images are 

given to the network, and it predict that they 

belong to a double-star correctly. However, to 

assess the accuracy of the network after 

learning, all of the test data should apply to the 

network. In doing so, a confusion matrix can be 

made. A confusion matrix is usually used in 

classification problems. A typical confusion 

matrix is defined as: 

𝐶 = [
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

], (13) 

where TP, FN, FP, and TN stand for true 

positive, false negative, false positive, and true 

negative, respectively. For two classes (class 

“1” and class “2”), these parameters are defined 

simply as follows: 

• TP shows the number of samples that 

belong to class “1” (Positive) and they are 

correctly predicted by the model to belong 

to class “1” (True). 

• FP shows the number of samples that 

actually belong to class “1” (Positive), but 

the model predicted them not to be in class 

“1” (False). 

• TN shows the number of samples that are 

not in class “1” (Negative) and the model 

correctly predicted them to be so (True). 

• FN shows the number of samples that the 

model predicted to be in class “1”, but did 

not actually belong to it (False Negative). 

These definitions can be generalized for more 

complex systems, e.g. 3, 4, 5, and 6 stars. 

In this work, the resulted normalized confusion 

matrix is shown in Fig. 14. The main diagonal 

elements of confusion matrix are related to the 

true predictions. If these elements approaches 

one, it can be said that the classification works 

well which can be seen in Fig. 14. 

 
Fig. 14. The resulted confusion matrix. 

IV. CONCLUSION 

In this paper, we investigated the use of a deep 

learning network to detect and classify the 

single and double stars in turbulent atmosphere. 

Production of single and double stars, 

simulation of turbulent wavefront, and 

simulation of intensity pattern in the focal and 

out of focus planes were done. All of the steps 

are done in Python programming language. The 

algorithm of production the images of single 

and double stars is worked in a “for loop” in 

python programming language. Therefore, at 

the same time for every iteration, a pair of 

focused and defocused images is generated and 

saved in hard drive in computer. Therefore, a 

dataset is built which contains various intensity 

pattern with random kinds of aberrations. The 

position of stars are based on the random 

numbers with uniform distribution. After 

building the dataset, it is enters the CNN 

algorithm. The CNN can learn to distinguish the 

star systems based on the experience it achieve 

by the dataset and learning procedure. 

A convolutional neural network was designed. 

In this network, layers of convolution and 

pooling are responsible to extract the useful 

features in the images. 6000 images were 

generated as the input to the network, and 6000 

labels corresponding to the images were 

defined. The learning process was done well 

and the accuracy of network approaches to 1. 

All of the simulations steps in this paper were 
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done in python programming language. To test 

the network, we used the test data. Moreover, 

confusion matrix method was utilized to 

interpret the true and false predictions for 

evaluating the network. Finally, the trained 

network had more than 98% accuracy. 
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