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ABSTRACT— Luminescent graphene oxide 

quantum dots (GOQDs) have attracted 

tremendous attention from scientists in 

chemistry, materials, biology, and physics 

science. They have specific properties such as 

low cytotoxicity, excellent electrochemical and 

optical properties, resistance to photo-

bleaching, and good stability. In this study, 

GOQDs were synthesized using a simple and 

straightforward methodology. The synthesized 

GOQDs were characterized by Fourier 

Transform Infrared (FTIR) analyzer, 

ultraviolet–visible spectrophotometry (UV–VIS) 

absorption, Photoluminescence (PL) 

spectroscopy, and transmission electron 

microscopy (TEM) analyses. Then, optical 

properties of GOQDs such as absorption and 

luminescence with various pH values were 

investigated. GOQDs show absorption in the 

ultraviolet (UV) region and their position of 

photoluminescence peak is independent of pH 

value. The average size of QDs is less than 5 nm, 

as revealed by TEM. The GOQDs show green 

luminescence under UV irradiation (360 nm). 
 

KEYWORDS: Graphene Oxide, Quantum Dots, 

pH, Photoluminescence, UV-Vis. 

I. INTRODUCTION 

Quantum dots are called semiconductor 

nanocrystals with size of about 1 to 10 nm [1-

3], which are widely used in light-emitting 

diodes (LEDs), lasers, environmental displays, 

electronic displays, and solar cells due to their 

unique electro-photo properties depending on 

their size [4-7]. However, due to the high cost 

and toxicity of quantum dots based on, their 

use in industry has been limited [6]. In recent 

decades, as a cost-effective and promising 

alternative, graphene quantum dots (GQDs), 

graphene oxide quantum dots (GOQDs), and 

carbon quantum dots (CQDs) have emerged as 

a new class of nanomaterials [8, 9]. Graphene 

oxide (GO) is a modern, single-layer structure 

of the well-known material of graphite oxide. 

Graphite oxide is not a substance found in 

nature and is artificially produced as a single 

layer of carbon atoms with a sp2 bond in a 

honeycomb network [10-12]. By reducing the 

particle size of graphene oxides to a multi-

nanometer scale, the optical properties and 

hydrophobicity of graphene oxide can be 

adjusted. These particles are called “graphene 

oxide quantum dots.” Due to their very low 

toxicity, hydrophobicity, and high optical 

efficiency, GOQDs promise extensive 

medicine applications [13-15]. 

So far, many methods have been reported to 

synthesis of GO and GOQDs, that are usually 

requiring a long reaction time. Graphene 

derivatives are generally produced via two 

methods: “bottom-up” and “top-down”. The 

first method uses small molecular precursors 

such as citrate, carbohydrates, glucosamine, 

ascorbic acid, saccharides, via combustion or, 

solvothermal process to make graphene 

derivatives [16-21]. The second method (top-
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down) usually breaks down more abundant 

carbon sources by means like electrochemical 

oxidation, laser ablation, and arc discharge 

[22-28]. Moreover, this should be mentioned 

that the above methods have risk of direct 

exposure to flammable carbon sources, strong 

oxidants and, strong acids, which may explode 

or burn, the synthesis process is quite tedious 

and time-consuming. In this research, we will 

report a secure and easy one-pot synthesis 

method using citric acid (CA) as the starting 

material for synthesis GOQDs. This method is 

quite simple and does not require tedious and 

Time processes. 

 
Fig. 1. The preparation process of GOQDs. 

Also, it has a much higher level of safety than 

other synthesis methods. In continuation, we 

study and analyze GOQDs at different pHs 

using transmission electron microscopy 

(TEM), infrared spectroscopy (FT-IR), ultra 

violet-visible (UV-Vis) absorption, and 

photoluminescence (PL) spectroscopy. 

II. EXPERIMENTAL SECTION 

A. Materials 

For synthesis of GOQDs, CA powder 

(C₆H₈O₇, 99%), sodium hydroxide (NaOH, 

97%) and ethanol (C2H5OH, 99%) were 

bought from Merck. The chemicals were all 

analytically pure and used without 

purification. Deionized (DI) water at room 

temperature was used for diluting samples to 

the ideal concentration throughout the 

experiment and washing. 

B. Synthesis of GOQDs 

GOQDs were synthesized using pyrolyzing 

citric acid (CA). Briefly, 4 gr of CA powder 

heated to 200 °C using a heater stirrer for 5 

min. During the heating process, the CA 

powder was first melted, and in the meantime, 

the color of the solution changed from 

colorless to yellow and eventually to dark 

brown within 1–10 min. Then, 2 gr of NaOH 

powder was dissolved in 50 ml of DI water. 

The solution of NaOH was added dropwise in 

the melted solution of CA at 35 °C, to prepare 

the solutions of different pH ranging from 7 to 

10. The effect of different pHs on the yield 

optical properties of the GQDs was studied in 

detail. Finally, the synthesized GOQDs 

solution was precipitated with ethanol, 

separated by centrifugation, and at last 
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dispersed in ultrapure water. The synthesis 

process is shown in Fig. 1. 

C. Characterization 

Characterizations of the synthesized GOQDs 

were conducted using TEM, FT-IR, UV–Vis, 

and, PL analyses. The TEM image of the 

GOQDs was acquired on a JEOL, JEM-2100F, 

200 KV electron source. Fourier Transform 

Infrared (FTIR) analyzer spectrum in region 

200–4000 cm
−1

 were restored on an Equinox 

55 FTIR spectrometer using Potassium 

bromide (KBr) pellets. Absorption spectra 

were recorded in area 200–900 nm by using 

Perkin Elmer 2500 UV-Vis 

spectrophotometer. The PL spectra were 

measured with G9800A Agilent, under 

ambient conditions. 

 
Fig. 2. TEM image and the corresponding size 

distribution curves of GOQDs. 

III. RESULTS AND DISCUSSION 

In our paper, the GOQDs are prepared using 

CA powder by 5 min of heating at 200ºC. The 

TEM image and the corresponding size 

distribution plot of the GOQDs for sample 

with pH=10 are shown in Fig. 2. Results reveal 

that QDs have quasi-spherical shapes with a 

nearly monodisperse size distribution. The 

mean diameters of the GOQDs is about 2 nm. 

Due to the presence of –COOH groups at the 

edges thereof, the particles are well dispersed, 

which can be seen in the Fig. 2. 

 The synthesized GOQDs were characterized 

by FTIR analysis. Fig. 3 shows the FTIR 

spectrum of QDs in the range of 400–4000 

cm
−1

 for pH=10. The FTIR spectrum of 

GOQDs shows the presence of C–O (υC–O at 

1048, and 1096 cm
-1

), C=O in carboxylic acid, 

C–OH (υC–OH at 1399 cm
-1

), and carbonyl 

moieties (υC=O at 1565 and 1737 cm-1), band 

around 2972 cm
-1

 due to both sp2 and sp3 C–

H modes, and the O-H band (broadband 

around 3420 cm
-1

) [29]. According to the 

articles, pH does not have an effect on 

reducing and increasing the grafts and 

functional groups of GOQDs and may only 

cause shifts [30]. 

 
Fig. 3. FTIR spectrum of GOQDs. 

 
Fig. 4. Absorption spectra of GOQDs in the various 

pH values. 
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Figure 4 shows the absorption spectra of 

GOQDs with various pH values in the aqueous 

solution. For GOQDs in the Fig. 4, as can be 

seen, GOQDs show the broad absorption in the 

UV region with a tail that extends to the 

visible range. The GOQDs show two shoulder 

peaks at 210-230 and 340 nm. The absorption 

peaks at 210-230 nm can be ascribed to π–π* 

 
Fig. 5. Fluorescence spectra of GOQDs in the 

various pH values. 

Electronic transitions of the aromatic C–C 

bonds in their structure. The absorption 

shoulder peaks at 340 nm can be related to the 

functional groups on their edges, correctly, 

π*– n transitions of the C=O bonds [29]. The 

GOQDs show a peak in the range of 286 to 

300 nm, due to the absorption of graphite 

structure in water, similar to GO. The 

absorption intensity in this range for different 

pHs is increasing and decreasing. Increased 

adsorption indicates that the electronic 

connections will be restored after rupture [31]. 

The UV–Vis spectra proved that on increasing 

the pH to 8.5, the absorption peaks become 

broader which caused the increase of 

distribution of particle size along with the pH. 

After this pH, the intensity of the peaks 

decreases up to 10. 

Figure 5 presents the room temperature PL 

spectra of as-prepared GOQDs with various 

pH values. PL spectra are recorded with an 

excitation wavelength of 360 nm. The PL 

spectra of the most carbon materials depends 

on the wavelength of their excitation. More 

and more cases have emerged with excited 

wavelength that are independent of emission 

position and can be attributed to their surface 

chemistry and uniform size. For the all five 

samples, the emission peaks do not shift in the 

various pH values, but its intensity decreases 

by increasing pH from 7.3 to 8.5 and increases 

with a pH of 10. The emission peak position of 

all samples was located at 469 nm and the 

highest photoluminescence intensity related to 

GOQDs with pH=10. This immutability in the 

peak position of the PL at different pHs 

indicates the independence of GOQDs relative 

to the pH. The primary source of the emission 

peak position of these materials may be free 

zigzag modes with a triple carbon state [32]. 

By increasing the pH, the increasing number 

of hydroxyl groups gets adhered to the QDs 

and resulting in an increase in the size of the 

QDs and lower PL. But, it may be attributed to 

the fact that in the case of pH=10, the presence 

of hydroxyl groups impeded the aggregation of 

the carbon nanoparticles and caused an 

increase in the size of the nanoparticles and 

PL. Thus, the pH of the CA solution played a 

vital role in the synthesis of GOQDs and their 

optical properties. 

 
Fig. 6. Photographs of GOQDs under UV light 

( 360nm  ) in various pH values. 

Figure 6 indicates that the solutions of GOQDs 

are transparent under UV irradiation, and large 

particles are not observed in them. Therefore, 

these QDs are well-dispersed in the aqueous 

phase. The as-prepared GOQDs solutions emit 

bright green color under UV illumination. The 
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emission colors of these GOQDs are consistent 

with the corresponding PL spectra in the Fig. 

5. Also, the emission color of all samples is 

unchanged in various pH values that 

compatible with the results of PL spectra in 

Fig. 5. The high transparency of the solutions 

indicates that the size of the QDs is less than 

10 nm. 

IV. CONCLUSION 

GOQDs were synthesized in the various pH 

values by pyrolyzing CA. Then, the effect of 

pH on physical and optical properties of 

synthesized QDs was investigated by FTIR, 

TEM, and optical spectroscopy. The FTIR 

analysis of the samples did not change with 

pH. TEM analysis showed that the particles 

size diameter was almost the same and less 

than 5 nm. The UV-Vis spectra of all samples 

showed two absorption peaks, n-π * and π-π * 

transitions, related to C = O and C = C bonds, 

which are observed in different pHs. The PL 

spectra of samples showed that the PL peak 

position did not change in the various pH 

values, indicating the independence of the PL 

of the GOQDs from the pH. 
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