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Abstract— We generalized the squeeze and 

displacement operators of the one-dimensional 
harmonic oscillator to the three-dimensional 
case and based on these operators we construct 
the corresponding coherent and squeezed states. 
We have also calculated the Wigner function for 
the three-dimensional harmonic oscillator and 
from the analysis of time evolution of this 
function, the quantum Liouville equation is also 
presented. Further properties of the quantum 
states including Mandel’s ࡽ and quadrature 
squeezing parameters are discussed as well. 
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I. INTRODUCTION 
The operator theory of harmonic oscillators [1] 
constitutes the groundwork of the elaborate 
quantum optical theory of photons. The 
quantization of electromagnetic radiation can 
be explained elegantly in terms of creator and 
annihilator operators, which operate on the 
corresponding energy levels [2-4]. Due to the 
second-order potential of harmonic oscillators, 
they can easily provide a direct bridge between 
classical optics and quantum optics through 
the phase-space Wigner functions [5], which 
are of extreme importance in the tomography 
of classical and non-classical lights [6-8]. 

Following the definition of coherent states put 
forward by Glauber [2-4], as the eigenstates of 
the annihilator operator, many studies have 
been done in order to generalize the concept of 
coherent states and the so-called squeezed 
states [5, 9]. Among these include an 
alternative definition of the generalized ݇-

photon coherent states [10], which introduce a 
modification of the squeezing operator to 
describe higher-order interactions. In another 
report [11] the authors consider the 
generalization of coherent states and their 
superpositions connected through unitary 
transformations, where the transformation 
maps the ground state of the harmonic 
oscillator (vacuum state) onto an arbitrary 
superposition of ܰ  2 coherent states. 

Since the successful demonstration of 
squeezed states of light in 1985 by Bell 
Laboratories [12], squeezed states have 
attracted much interest because of their 
possibility to significantly suppress the 
quantum noise, which is generally believed to 
be originated by the zero-point fluctuations of 
the vacuum [5]. Currently, squeezed states are 
routinely produced at laboratories using both 
solid-state and semiconductor lasers [13] and 
in high-ܳ cavities [14]. 

Similarly, generalizations or extensions to the 
concept of squeezed states have been 
considered in numerous researches. Nieto [15] 
was the first to discuss the explicit functional 
forms for the squeeze and time-displacement 
operators and their applications, as successive 
multiplications of exponentials of simple 
operators. Bialynicki-Birula [16, 17] presented 
a discussion of squeezed states of a 
generalized infinite-dimensional harmonic 
oscillator, when the ground state wave 
function takes on a Gaussian form. He 
furthermore presented the corresponding 
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Wigner function and discussed its relativistic 
properties. 

As another generalization of the simple one-
dimensional harmonic oscillator, the problem 
of damped harmonic oscillator because of its 
time-dependent Hamiltonian was proposed and 
considered by Um et. al. [18], and they 
presented closed form expressions for squeeze 
and displacement operators. Also, Sohn and 
Swanson [19] have recently obtained exact 
transition elements of the squeezed harmonic 
oscillator when the generalized Hamiltonian 
describes two-photon processes, using 
Bogoliubov transformations. Fakhri [20] 
considered the three-dimensional (3D) 
harmonic oscillator and Morse potentials, and 
showed that the constructed Heisenberg Lie 
superalgebras would lead to multiple 
supercharges. In his analysis, he analyzed the 
3D harmonic oscillator in the spherical system 
of coordinates. Finally, Fan and Jiang [21] 
have constructed three mutually commuting 
squeeze operators, which are applicable to 
three-mode states. 

In this paper, we revisit the 3D harmonic 
oscillator and obtain generalized expressions 
for the corresponding coherent and squeezed 
states, starting from the Cartesian coordinates 
in which the harmonic oscillator can be easily 
factorized. We also present closed-form simple 
expressions which explicitly represent the 
corresponding displacement and squeeze 
operators, and the corresponding generalized 
Mandel’s ܳ parameter is obtained for the 
generalized squeezed state in the form of a 
vector. We show that how proper definition of 
vector operators and variable could greatly 
simplify the notations of operators and 
eigenstates. 

II. COHERENT STATES AND THE 
DISPLACEMENT OPERATOR 

A. Wigner function for 3D harmonic 
oscillator 
We can calculate wave function of three-
dimensional (3D) harmonic oscillator directly 
from the Schrödinger equation, with the 
diagonalized potential given by 

ܷሺܚሻ ൌ
ܯ
2

൫߱௫௫
ଶݔଶ  ߱௬௬

ଶݕଶ

 ߱௭௭
ଶݖଶ൯                               ሺ2.1ሻ 

Here, without loss of generality one may 
assume that ߱௫௫ ൌ ߱௬௬ ൌ ߱௭௭ ൌ ߱. Now let 
|݉, ݊,  denote the energy eigenstates of 3D ۄ݈
harmonic oscillator, hence for the 
corresponding annihilation and creation 
operators we have 

ොܽ௫|݉, ݊, ۄ݈ ൌ √݉|݉ െ 1, ݊, ሺ2.2                ۄ݈ െ aሻ 

ොܽ௬|݉, ݊, ۄ݈ ൌ √݊|݉, ݊ െ 1, ሺ2.2                  ۄ݈ െ bሻ 

ොܽ௭|݉, ݊, ۄ݈ ൌ √݈|݉, ݊, ݈ െ ሺ2.2                   ۄ1 െ cሻ 

ොܽ௫
ற|݉, ݊, ۄ݈ ൌ √݉  1|݉  1, ݊, ሺ2.2       ۄ݈ െ dሻ 

ොܽ௬
ற|݉, ݊, ۄ݈ ൌ √݊  1|݉, ݊  1, ሺ2.2       ۄ݈ െ eሻ 

ොܽ௭
ற|݉, ݊, ۄ݈ ൌ √݈  1|݉, ݊, ݈  ሺ2.2          ۄ1 െ fሻ 

Hence, the eigenfunctions will be  

Ψሺܚሻ ൌ ,݉|ܚۦ ݊, ݈ۧ

ൌ
1

√2ାା݊! ݉! ݈!
ቆ

ଶߢ

ߨ
ቇ

ଷ
ସ

exp ൬െ
1
2

 ଶ൰ݎଶߢ

HሺݔߢሻHሺݕߢሻHሺݖߢሻ                                  ሺ2.3ሻ 

where ߢ ൌ ඥ߱ܯ ⁄ . We can find the 
corresponding Wigner function for this system 
from the definition of the Wigner function as 

W|,,ۄሺܚ, ሻܘ ൌ ൬
1

ߨ2
൰

ଷ
ම ݀ଷߞ

ஶ

ିஶ

exp ൬െ
݅


ܘ

· ા൰ ർܚ  ଵ
ଶ
ાቚߩොቚܚ െ ଵ

ଶ
ા          ሺ2.4ሻ 

Here, ߩො is the density operator and ા ൌ ௫ܑߞ 
ܒ௬ߞ   ௭k represents the dummy integrationߞ
variable. In the case of pure state with 
ොߩ ൌ |݉, ݊, ,݉ۃۄ݈ ݊, ݈| gives 

W|,,ۄሺܚ, ሻܘ ൌ ൬
1

ߨ2
൰

ଷ
 

ම ݀ଷߞ
ஶ

ିஶ

exp ൬െ
݅


ܘ · ા൰ Ψ
כ ቀܚ െ ଵ

ଶ
ાቁ 

Ψ ቀܚ  ଵ
ଶ
ાቁ                                                   ሺ2.5ሻ 

The Wigner function of 3D harmonic 
oscillator will take the form 
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W|,,ۄሺܚ, ሻܘ ൌ
ሺെ1ሻାା

ሺߨሻଷ  

exp െ ቀ
ܘ

ߢ
ቁ

ଶ
െ ሺܚߢሻଶ൨ L ൜2 ቀ

௫

ߢ
ቁ

ଶ
 ሺݔߢሻଶ൨ൠ 

L୫ ቊ2 ቈቀ
௬

ߢ
ቁ

ଶ
 ሺݕߢሻଶቋ 

L ൜2 ቀ
௭

ߢ
ቁ

ଶ
 ሺݖߢሻଶ൨ൠ                                     ሺ2.6ሻ 

in which Lሺݔሻ is the Laguerre function of 
order ݊; see appendix A for the detailed 
derivation of (2.6). For the generation of 
coherent states, we must apply a suitable 
displacement operator to the ground state of 
3D harmonic oscillator. In doing so, we need 
to generalize the method of [15] in 
construction of 3D displacement operator. 

B. Construction of coherent state 
The ground state of a 3D harmonic oscillator is 
given by 

Ψሺܚሻ ൌ ۧ|ܚۦ ൌ ቆ
ଶߢ

ߨ
ቇ

ଷ
ସ

 exp ൬െ
1
2

 ଶ൰       ሺ2.7ሻݎଶߢ

in which the ground state |ۄ is defined using 
the null integer triplet  ൌ ሺ0,0,0ሻ. Now we 
define the displacement operator as 

ሺહሻܦ ൌ exp൫ߙ௫ ොܽ௫
ற െ ௫ߙ

כ ොܽ௫൯ 

exp൫ߙ௬ ොܽ௬
ற െ ௬ߙ

כ ොܽ௬൯ 

exp൫ߙ௭ ොܽ௭
ற െ ௭ߙ

כ ොܽ௭൯                                      ሺ2.8ሻ 

Here, the displacement vector ൌ ௫ܑߙ  ܒ௬ߙ 
 ௭ being complexߙ ௬, andߙ ,௫ߙ with , ܓ௭ߙ
constants. As will be shown, the order of 
displacements along ݕ ,ݔ, and ݖ is irrelevant. 
This is because of the obvious relations 

ሾ ොܽఐ, ොܽఔሿ ൌ ൣ ොܽఐ
ற, ොܽఔ

ற൧ ൌ 0,
,ߡ ߥ ൌ ,ݔ ,ݕ ሺ2.9                   ݖ െ ܽሻ 

ൣ ොܽఐ, ොܽఔ
ற൧ ൌ ൣ ොܽఐ

ற, ොܽఔ൧ ൌ 0,
ߡ ് ሺ2.9                               ߥ െ ܾሻ 

In trying to find a compact form for this 
operator we start from the Baker-Campbell-
Hausdorff relation [5], which reads 

exp൫ܣመ  ൯ܤ

ൌ exp൫ܣመ൯exp൫ܤ൯exp ൬
1
2

,መܣൣ  ൧൰                  ሺ2.10ሻܤ

given that 

ቂܣመ, ,መܣൣ ൧ቃܤ ൌ ቂܤ, ,መܣൣ ൧ቃܤ ൌ 0                          ሺ2.11ሻ 

Hence the displacement operator is simplified 
into the compact form 

ሺહሻܦ ൌ exp൫હ · ොற܉ െ હכ ·  ො൯                         ሺ2.12ሻ܉

where the vector creation and annihilation 
operators are defined by 

ො܉ ൌ ොܽ௫ܑ  ොܽ௬ܒ  ොܽ௭ܓ                                 ሺ2.13 െ aሻ 

ොற܉ ൌ ොܽ௫
றܑ  ොܽ௬

றܒ  ොܽ௭
றܓ                         ሺ2.13 െ bሻ 

The application of the displacement operator 
 results in ۄሺહሻ to the ground state |ܦ

ۄሺહሻ|ܦ ൌ |હۄ                                                  ሺ2.14ሻ 

where |હۄ is defined as the generalized 
coherent state in 3D. Also, from the properties 
of ܉ො and ܉ොற one can further observe that  

ሺહሻܦ ൌ exp ൬െ
1
2

હ · હכ൰ exp൫હ ·  ොற൯܉

expሺെહכ ·  ොሻ                                                      ሺ2.15ሻ܉

The position representation of |હۄ will be 

હۧ|ܚۦ ൌ ቆ
ଶߢ

ߨ
ቇ

ଷ
ସ

 exp ൜െ
1
2

ቂ൫ݔߢ െ ௫൯ߙ2√
ଶ

 ൫ݕߢ െ ௬൯ߙ2√
ଶ

 ൫ݖߢ െ ௭൯ߙ2√
ଶቃൠ 

ൌ ቆ
ଶߢ

ߨ
ቇ

ଷ
ସ

 exp ൬െ
1
2

หܚߢ െ √2હห
ଶ

൰                   ሺ2.16ሻ 

The direct application of the displacement 
operator also can be simply shown to equally 
result in the triple infinite series of the 
generalized coherent state as 

|હۄ ൌ ۄሺહሻ|ܦ ൌ exp ൬െ
1
2

હכ · હ൰ 
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൫ߙ௫ܑ · ܒ௬ߙොற൯൫܉ · ܓ௭ߙොற൯൫܉ · ොற൯܉

݉! ݊! ݈!
|ۄ

ஶ

,,ୀ

ൌ exp ൬െ
1
2

હכ · હ൰ 


௫ߙ

ߙ௬
ߙ௭



݉! ݊! ݈!
|݉, ݊, ۄ݈

ஶ

,,ୀ

                              ሺ2.17ሻ 

C. Over-completeness of coherent states 
As one of the important properties of coherent 
sates we can examine the over-completeness 
of the proposed coherent sates. A set of states 
are called over-complete if they form a 
complete set and are not orthogonal. We first 
consider the completeness of coherent states: 

න |હۃۄહ| ݀ߙ 
ஶ

ିஶ

ൌ ම|હۃۄહ| ݀ଶߙ௫ ݀ଶߙ௬ ݀ଶߙ௭

ஶ

ିஶ

 

ൌ ම ݀ଶߙ௫ ݀ଶߙ௬ ݀ଶߙ௭ exp ቆെ
|હ|ଶ

2 ቇ exp ቆെ
|હ|ଶ

2 ቇ 
ஶ

ିஶ

 

 
௫ߙ

ߙ௫
כ ߙ௬

ߙ௬
כ ߙ௭

 ௭ߙ
,݊|௪כ ݉, ,ۃۄ݈ ,ݍ |ݓ

ඥ݊! ݉! ݈! ! !ݍ !ݓ

ஶ

,,௪ୀ

ஶ

,,ୀ

  

          ሺ2.18ሻ 

where ݀ଶߙఐ ൌ ݀ሺReሼߙఐሽሻ ݀ሺImሼߙఐሽሻ     ; ߡ     ൌ
,ݔ ,ݕ  :Using the change of variables .ݖ

൜
ఐߙ ൌ ఐሻߠఐexpሺ݅ݎ
݀ଶߙఐ ൌ ఐߠఐ݀ݎఐ݀ݎ

   ; ߡ    ൌ ,ݔ ,ݕ ݖ                        ሺ2.19ሻ 

results in: 

 
|݊, ݉, ,ۃۄ݈ ,ݍ |ݓ

ඥ݊! ݉! ݈! ! !ݍ !ݓ

ஶ

,,௪ୀ

ஶ

,,ୀ

 

ම ௫ݎ
ାାଵ ݎ௬

ାାଵݎ௭
ା௪ାଵexpሺെݎଶሻ ݀ݎ௫ ݀ݎ௬ ݀ݎ௭

ஶ



 

න න න exp൛݅ൣሺ݊ െ ௫ߠሻ  ሺ݉ െ ௬ߠሻݍ

ଶగ



ଶగ



ଶగ


 ሺ݈ െ ௭ߠ݀ ௬ߠ݀ ௫ߠ݀ ௭ሿൟߠሻݓ     ;    

ଶݎ ൌ ௫ݎ
ଶ  ௬ݎ

ଶ  ௭ݎ
ଶ                                      ሺ2.20ሻ 

It is known that  expሾ݅ሺ݊ െ ݉ሻߠሿ ݀ߠଶగ
 ൌ

ఐݎ , so usingߜߨ2
ଶ ൌ ఐߛ ՜ ఐݎఐ݀ݎ2 ൌ ;  ఐߛ݀ ߡ  ൌ

,ݔ ,ݕ  :we get ,ݖ

න |હۃۄહ| ݀ߙ 
ஶ

ିஶ

ൌ 

ଷߨ 
|݊, ݉, ,݊ۃۄ݈ ݉, ݈|

݊! ݉! ݈!

ஶ

,,ୀ

න expሺെߛ௫ሻߛ௫
 ݀ߛ௫

ஶ

ିஶ

 

න exp൫െߛ௬൯ߛ௬
 ݀ߛ௬

ஶ

ିஶ

න expሺെߛ௭ሻߛ௭
 ݀ߛ௭

ஶ

ିஶ

    ሺ2.21ሻ 

which can be easily simplified by using the 
identity  expሺെߛሻߛ ݀ߛஶ

ିஶ ൌ ݊! into the 
expression: 

න |હۃۄહ| ݀ߙ 
ஶ

ିஶ

ൌ ଷߨ  |݊, ݉, ,݊ۃۄ݈ ݉, ݈|
ஶ

,,ୀ
ൌ  ଷ                                        ሺ2.22ሻߨ

Therefore the proposed coherent sates 
constitute a complete set. Now we examine 
their non-orthogonality by considering the 
inner product of two different coherent states 
|હۄ and |ۄ : 

|હۧۦ ൌ exp ൬െ
1
2

હכ · હ൰  exp ൬െ
1
2

כ · ൰ 

 
௫ߚ

௬ߚכ
௭ߚכ

௫ߙ כ
ߙ௬

ߙ௭
௪ ݊ۦ, ݉, ,|݈ ,ݍ ۧݓ

ඥ݊! ݉! ݈! ! !ݍ !ݓ

∞

,,௪ୀ

∞

,,ୀ

ൌ exp െ
1
2

ሺહכ · હ  כ · ሻ ൨ 


ሺߚ௫

௬ߚ௫ሻ൫ߙכ
௭ߚ௬൯ሺߙכ

 ௭ሻߙכ
݊! ݉! ݈!

∞

,,ୀ

 

ൌ exp െ
1
2

ሺહכ · હ  כ · ሻ  כ · હ൨ 

ൌ exp 
1
2

ሺכ · હ െ  · હכሻ൨ 

exp െ
1
2

ሺכ െ હכሻ · ሺ െ હሻ൨                        ሺ2.23ሻ 

Hence, we obtain the squared magnitude of the 
inner product as: 

|હۧ|ଶۦ| ൌ expሾെሺ െ હሻכ · ሺ െ હሻሿ
് 0                                       ሺ2.24ሻ 

which declares that 3D coherent states are not 
orthogonal, but their inner product tends to 
vanish, when |ࢼ െ  .is sufficiently large |ࢻ
Equations (2.22) and (2.24), establish, 
therefore, that the proposed coherent sates are 
over-complete. 
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D. Quantum Liouville equation in 3D 
Now we attempt to find the quantum Liouville 
equation for the generalized 3D harmonic 
oscillator system of interest. So we start from 
time evolution of our six-dimensional (6D) 
Wigner function. We have the Von Neumann 
equation for the time evolution of density 
operator as [1,5] 

ොߩ߲
ݐ߲

ൌ െ
݅


,ܪൣ  ො൧                                                  ሺ2.25ሻߩ

with ܪ representing the Hamiltonian of the 3D 
harmonic oscillator. Starting from this 
equation we can show that 

߲
ݐ߲

ർܚ 
1
2

ાฬߩොฬܚ െ
1
2

ા

ൌ െ
݅


ർܚ 
1
2

ાฬൣܪ, ܚො൧ฬߩ െ
1
2

ા                         ሺ2.26ሻ 

With substitution of (2.19) in the definition of 
Wigner function we get 

߲
ݐ߲

Wሺܚ, ,ܘ ሻݐ ൌ ܶ  ܳ                                        ሺ2.27ሻ 

Here, ܶ and ܳ respectively correspond to 
kinetic and potential energies in terms of 
Moyal functions and introduce a Fourier 
transform as in [5]. The derivation closely 
follows the approach in [5], however, we employ 
the generalized 3D expressions for functions and 
operators. Hence, ܶ and ܳ will be given by the 
expressions 

ܶ ൌ െ
݅


1
ܯ2

൬
1

ߨ2
൰

ଷ
 

ම ݀ଷ

ஶ

ିஶ

expߞ ൬െ
݅


ܘ · ા൰ ,ܚሺܩ ,ܘ ાሻ 

,ܚሺܩ ,ܘ ાሻ ൌ ർܚ 
1
2

ાฬሾܘෝଶ, ܚොሿฬߩ െ
1
2

ા    ሺ2.28 െ aሻ 

and 

ܳ ൌ െ
݅


൬
1

ߨ2
൰

ଷ
ම ݀ଷ

ஶ

ିஶ

expߞ ൬െ
݅


ܘ · ા൰ ܴሺܚ, ,ܘ ાሻ 

ܴሺܚ, ,ܘ ાሻ ൌ ർܚ 
1
2

ાฬൣ ܷ, ܚො൧ฬߩ െ
1
2

ા      ሺ2.28 െ bሻ 

The potential energy operator ܷ is similarly 
defined as in [5]. Now we need to calculate ܶ 
and ܳ in terms of the Wigner function and its 

higher-order derivatives. First we consider the 
kinetic energy term, which gives rise after 
some mathematical manipulations to the 
following equation for the kinetic energy term 

ܶ ൌ െ
1
ܯ

ܘ  · ,ܚWሺ ,ܘ  ሻ                               ሺ2.29ሻݐ

Now consider potential energy term. From the 
3D Taylor expansion near ܚ, we have: 

ܷ ൬ܚ േ
1
2

ા൰ ൌ 
1
݊!

൬േ
1
2

ા · ൰


ܷሺܚሻ
ஶ

ୀ

         ሺ2.30ሻ 

Therefore we obtain 

ܷ ൬ܚ 
1
2

ા൰  ܷ ൬ܚ െ
1
2

ા൰ 

ൌ 
ሺ݅ሻଶ

2ଶሺ2݊ሻ!
൬െ

݅


൰
ଶ

ሺા · ሻܚሻଶܷሺ
ஶ

ୀ

         ሺ2.31ሻ 

and 

ܷ ൬ܚ 
1
2

ા൰ െ ܷ ൬ܚ െ
1
2

ા൰

ൌ 
2ሺ݅ሻଶାଵ

2ଶାଵሺ2݊  1ሻ!
൬െ

݅


൰
ଶାଵ

ሺા · ሻܚሻଶାଵܷሺ
ஶ

ୀ

 

                                                                               ሺ2.32ሻ 

We finally have the closed-form expression 

ܳ ൌ 
ሺെ1ሻଶ

2ଶሺ2݊  1ሻ!
൫ · ,ܚሻWሺܚ൯ଶାଵܷሺ ,ܘ ሻݐ

ஶ

ୀ

 

                                                                                ሺ2.33ሻ 
With substitution of (2.29) and (2.33) in (2.27) 
we get the Liouville's equation for the time-
evolution of the Wigner function in 3D in the 
compact form 


߲
ݐ߲


1
ܯ

ܘ · ൨  Wሺܚ, ,ܘ  ሻݐ

ൌ 
ሺെ1ሻଶ

2ଶሺ2݊  1ሻ!
൫ · ,ܚሻWሺܚ൯ଶାଵܷሺ ,ܘ ሻݐ

ஶ

ୀ

 

                                                                                ሺ2.34ሻ 

For the 3D harmonic oscillator in general case, 
the potential ܷሺܚሻ is second-order in ܚ. So for 
the harmonic oscillator, the right-hand-side of 
the Liouville's equation is equal to zero. 
Hence, the quantum Liouville's equation for 
3D harmonic oscillator will be simply 
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߲
ݐ߲


1
ܯ

ܘ ·  െ ሻܚሺܷ · ൨  Wሺܚ, ,ܘ ሻݐ

ൌ 0                                          ሺ2.35ሻ 

E. Time evolution of coherent state 
The Hamiltonian of 3D harmonic oscillator is 
time independent, so for the temporal 
evolution of the coherent state we can write 
down 

|Ψୡ୭୦ሺݐሻۄ

ൌ exp ൬െ
݅


൰ݐܪ  |݉, ݊, ,݉ۦۄ݈ ݊, ݈|Ψୡ୭୦ሺ0ሻۧ
ஶ

,,ୀ

  

                                                                           ሺ2.36ሻ 

Defining the expansion coefficients as 

Ω,, ൌ ,݉ۦ ݊, ݈|Ψୡ୭୦ሺ0ሻۧ                          ሺ2.37ሻ 

we get after some algebra 

Ω,, ൌ  exp ൬െ
1
2

હכ · હ൰
௫ߙ

ߙ௬
ߙ௭



√݉! ݊! ݈!
 

                                                                            ሺ2.38ሻ 

On the other hand 

,݉|ܪ ݊, ۄ݈ ൌ ߱ ൬݉  ݊  ݈ 
3
2

൰ |݉, ݊,  ۄ݈

                                                                            ሺ2.39ሻ 

After simplifying we have 

|Ψୡ୭୦ሺݐሻۄ ൌ exp ൬െ
3
2

 ൰ݐ߱݅


൫ߙ௫݁ିఠ௧൯൫ߙ௬݁ିఠ௧൯൫ߙ௭݁ିఠ௧൯

√݉! ݊! ݈!

ஶ

,,ୀ

 

exp െ
1
2

൫݁ିఠ௧હ൯כ · ൫݁ିఠ௧હ൯൨ |݉, ݊,  ۄ݈

                                                                       ሺ2.40ሻ 

from which we obtain 

|Ψୡ୭୦ሺݐሻۄ

ൌ exp ൬െ
3
2

൰ݐ߱݅ หΨୡ୭୦݁ିఠ௧ۄ                  ሺ2.41ሻ 

From this relation we see that the time 
evolution of coherent state is also a coherent 
state, and also after one period ଶగ

ఠ
  of 

oscillation, the state vector phase change is 
ଷ
ଶ

߱ ൈ ଶగ
ఠ

ൌ   .ߨ3

F. Position representation of coherent state 
In the below we try to find a compact form for 
position representation of coherent state of 3D 
harmonic oscillator. This results in 

ሻۧݐΨୡ୭୦ሺ|ܚۦ ൌ ቆ
ଶߢ

ߨ
ቇ

ଷ
ସ
 

exp െ
1
2

ሺ3݅߱ݐ  હכ · હ   ଶሻ൨ݎଶߢ

exp ൬െ
1
2

݁ିଶఠ௧હ · હ൰ 

exp൫√2݁ିఠ௧ܚߢ · હ൯                                          ሺ2.42ሻ 

Using the definitions 

ሻݐҧሺܚ ൌ
√2
ߢ

Re൛݁ିఠ௧હൟ                            ሺ2.43 െ aሻ 

ሻݐഥሺܘ ൌ √2ߢIm൛݁ିఠ௧હൟ                       ሺ2.43 െ bሻ 

Φ୮ሺݐሻ ൌ
3
2

ሺ2.43                                          ݐ߱ െ cሻ 

ሻݐሺܣ݅ ൌ
હכ · હ

2
൫1  ݁ିଶఠ௧൯ െ

ଶߢ

2
ሻݐҧሺܚ  ·  ሻݐҧሺܚ

ൌ
1
2

൫݁ିଶఠ௧હכ · હ െ Re൛݁ିଶఠ௧હ · હൟ൯ 

                                                                         ሺ2.43 െ dሻ 

Finally, the complete form of position space 
representation of coherent state is 

Ψୡ୭୦ሺܚ, ሻݐ ൌ ሻۧݐΨୡ୭୦ሺ|ܚۦ ൌ ቆ
ଶߢ

ߨ
ቇ

ଷ
ସ
 

exp ቊെ
ଶߢ

2
ሾܚ െ ሻሿݐҧሺܚ · ሾܚ െ  ሻሿቋݐҧሺܚ

exp 
݅


ሻݐഥሺܘ ·  ሻ൨ݐҧሺܚ

exp൛െ݅ൣΦ୮ሺݐሻ   ሻ൧ൟ                                ሺ2.44ሻݐሺܣ

Here, as for the case in 1D problem ܣሺݐሻ for 
real હ will take on real values, otherwise it 
will be complex. 

III. SQUEEZED STATES AND THE 
SQUEEZE OPERATOR 

Now we try to find functional form of squeeze 
operator and squeezed state of 3D harmonic 
oscillator and position representation of this 
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squeezed state. For 1D case, the squeeze 
operator is defined as 

መܵሺݏሻ ൌ exp ൬
1
2

ݏ ොܽற ොܽற െ
1
2

כݏ ොܽ ොܽ൰                     ሺ3.1ሻ 

where in general ݏ is a complex number  

ݏ ൌ ఏ݁|ݏ| ൌ ଵݏ   ଶ                                         ሺ3.2ሻݏ݅

Expanded form of 1D squeezing operator is 
therefore 

መܵሺݏሻ ൌ exp 
1
2

݁ఏtanh|ݏ|൫ ොܽற൯ଶ൨ sech
ଵ
ଶ|ݏ| 


ሺsech|ݏ| െ 1ሻ

݊!

ஶ

ୀ

൫ ොܽற൯ሺ ොܽሻ൩  

exp െ
1
2

݁ିఏtanh|ݏ|ሺ ොܽሻଶ൨                        ሺ3.3ሻ 

If we use notation of [15] as 

ොݔ ൌ
1

√2
൫ ොܽ  ොܽற൯                                           ሺ3.4 െ aሻ 

መ߲ ൌ ̂݅ ൌ
1

√2
൫ ොܽ െ ොܽற൯                                 ሺ3.4 െ bሻ 

the new form of squeezing operator will take 
the form 

መܵሺݏሻ ൌ exp െݏଵ ൬ݔො መ߲ 
1
2

൰


݅
2

ොଶݔଶ൫ݏ  መ߲ ଶ൯൨                    ሺ3.5ሻ 

In the expanded form we have 

መܵሺݏሻ ൌ ԭିଵ
ଶexp ቈ݅

ଶݏ

|ݏ|2
sinh|ݏ|

ԭ
ොଶݔ expൣെlnሺԭሻݔො መ߲൧ 

exp ቈ݅
ଶݏ

|ݏ|2
sinh|ݏ|

ԭ
መ߲ ଶ                                         ሺ3.6ሻ 

where 

ԭ ൌ  cosh|ݏ| 
sଵ
|ݏ| sinh|ݏ| 

ൌ ݁|௦|cosଶ ൬
ߠ
2

൰  ݁ି|௦|sinଶ ൬
ߠ
2

൰                       ሺ3.7ሻ 

In generalization of this concept to 3D case we 
consider 3D squeezing as independently 
squeezing of wave function of harmonic 
oscillator in the three ݕ ,ݔ, and ݖ dimensions. 
So for the 3D harmonic oscillator this method 
can be applied directly resulting as 

መܵሺܛሻ ൌ መܵ௫ሺݏ௫ሻ መܵ௬൫ݏ௬൯ መܵ௭ሺݏ௭ሻ           ሺ3.8ሻ 

Here, መܵ௫ሺݏ௫ሻ, መܵ௬൫ݏ௬൯, and መܵ௭ሺݏ௭ሻ operate only 
on ݕ ,ݔ, and ݖ dimensions, respectively, and 
hence the order of their appearance is 
irrelevant as will be shown shortly. We have 

መܵ௫ሺݏ௫ሻ ൌ exp ቆ
௫ݏ ොܽ௫

ற ොܽ௫
ற െ ௫ݏ

כ ොܽ௫ ොܽ௫

2
ቇ    ሺ3.9 െ aሻ 

መܵ௬൫ݏ௬൯ ൌ exp ቆ
௬ݏ ොܽ௬

ற ොܽ௬
ற െ ௬ݏ

כ ොܽ௬ ොܽ௬

2
ቇ  ሺ3.9 െ bሻ 

መܵ௭ሺݏ௭ሻ ൌ exp ቆ
௭ݏ ොܽ௭

ற ොܽ௭
ற െ ௭ݏ

כ ොܽ௭ ොܽ௭

2
ቇ     ሺ3.9 െ cሻ 

Therefore 

መܵሺܛሻ ൌ exp 
1
2

௫൫ݏ ොܽ௫
ற൯

ଶ
െ

1
2

௫ݏ
ሺכ ොܽ௫ሻଶ൨ 

exp 
1
2

௬൫ݏ ොܽ௬
ற൯

ଶ
െ

1
2

௬ݏ
൫כ ොܽ௬൯ଶ൨ 

exp 
1
2

௭൫ݏ ොܽ௭
ற൯

ଶ
െ

1
2

௭ݏ
ሺכ ොܽ௭ሻଶ൨                      ሺ3.10ሻ 

Now let the following definitions hold 

ߥ̂ ൌ
1

√2
൫ ොܽఔ  ොܽఔ

ற൯                                ሺ3.11 െ aሻ 

መ߲ఔ ൌ ఔ̂݅ ൌ
1

√2
൫ ොܽఔ െ ොܽఔ

ற൯                   ሺ3.11 െ bሻ 

in which ߥ ൌ ,ݔ ,ݕ  We furthermore we can .ݖ
show that 

ቂሺ ොܽఐሻଶ, ൫ ොܽఔ
ற൯

ଶ
ቃ ൌ ቂ൫ ොܽఐ

ற൯
ଶ

, ሺ ොܽఔሻଶቃ ൌ ሾሺ ොܽఐሻଶ, ሺ ොܽఔሻଶሿ

ൌ ቂ൫ ොܽఐ
ற൯

ଶ
, ൫ ොܽఔ

ற൯
ଶ

ቃ ൌ 0        ሺ3.12ሻ 
where 

,ߡ ߥ ൌ ,ݔ ,ݕ  ݖ

ߡ ്  ߥ

With subsequent use of (3.12) we can show 
that 

ቈ൫ ොܽఐ
ற൯

ଶ
, ቂ൫ ොܽఐ

ற൯
ଶ

, ሺ ොܽఔሻଶቃ

ൌ ቈሺ ොܽఔሻଶ, ቂ൫ ොܽఐ
ற൯

ଶ
, ሺ ොܽఔሻଶቃ

ൌ 0                                   ሺ3.13 െ aሻ 
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ቈሺ ොܽఐሻଶ, ቂሺ ොܽఐሻଶ, ൫ ොܽఔ
ற൯

ଶ
ቃ

ൌ ቈ൫ ොܽఔ
ற൯

ଶ
, ቂሺ ොܽఐሻଶ, ൫ ොܽఔ

ற൯
ଶ

ቃ

ൌ 0                        ሺ3.13 െ bሻ 
ൣሺ ොܽఐሻଶ, ሾሺ ොܽఐሻଶ, ሺ ොܽఔሻଶሿ൧   ൌ ൣሺ ොܽఔሻଶ, ሾሺ ොܽఐሻଶ, ሺ ොܽఔሻଶሿ൧

ൌ 0                                    ሺ3.13 െ cሻ 

ቈ൫ ොܽఐ
ற൯

ଶ
, ቂ൫ ොܽఐ

ற൯
ଶ

, ൫ ොܽఔ
ற൯

ଶ
ቃ

ൌ ቈ൫ ොܽఔ
ற൯

ଶ
, ቂ൫ ොܽఐ

ற൯
ଶ

, ൫ ොܽఔ
ற൯

ଶ
ቃ

ൌ 0                                 ሺ3.13 െ dሻ 
,ߡ ߥ ൌ ,ݔ ,ݕ  ݖ

ߡ ്  ߥ
From equation (3.13) and after using (3.12), 
and the Baker-Campbell-Hausdorff relation 
one can easily show that the squeeze operator 
in 3D takes the more compact form 

መܵሺܛሻ ൌ exp ൜
1
2

ቂݏ௫൫ ොܽ௫
ற൯

ଶ
 ௬൫ݏ ොܽ௬

ற൯
ଶ

 ௭൫ݏ ොܽ௭
ற൯

ଶ

െ ௫ݏ
ሺכ ොܽ௫ሻଶ െ ௬ݏ

൫כ ොܽ௬൯ଶ

െ ௭ݏ
ሺכ ොܽ௭ሻଶቃൠ                         ሺ3.14ሻ 

With the help of the definitions of vectors 

ܛ ൌ ௫ܑݏ  ܒ௬ݏ  ሺ3.15                                 ܓ௭ݏ െ aሻ 
ଶۯ ൌ ොܽ௫

ଶܑ  ොܽ௬
ଶܒ  ොܽ௭

ଶܓ                      ሺ3.15 െ bሻ 

றଶۯ ൌ ොܽ௫
றଶ

ܑ  ොܽ௬
றଶ

ܒ  ොܽ௭
றଶ

ሺ3.15              ܓ െ cሻ 
we can find a rather compact form for 
squeezing operator as 

መܵሺܛሻ ൌ exp 
1
2

ቀܛ ڄ றଶۯ െ כܛ ڄ  ଶቁ൨              ሺ3.16ሻۯ

The following commutation relations clearly 
hold 

ሾߡ,̂ ሿߥ̂ ൌ ሾ̂ఐ, ఔሿ̂ ൌ ൣ መ߲ఐ, መ߲ఔ൧ ൌ ሾߡଶ̂, ଶሿߥ̂ ൌ ቂ መ߲ఐ
ଶ

, መ߲ఔ
ଶቃ

ൌ ߡൣ ߲̂ መఐ, ߥ̂ መ߲ఔ൧ ൌ 0                    ሺ3.17ሻ 
,ߡ ߥ ൌ ,ݔ ,ݕ  ݖ

ߡ ്  ߥ
from which the alternate form of the squeeze 
operator is obtained 

መܵሺܛሻ ൌ exp െܛଵ · ࣬ መ߲  ݅
1
2

ଶܛ · ൫ ࣬ଶ  መ߲ ଶ൯൨  
                 ሺ3.18ሻ 

In the last equation we have used the short-
hand notations 

ଵܛ ൌ Reሼܛሽ                                                    ሺ3.19 െ aሻ 
ଶܛ ൌ Imሼܛሽ                                                    ሺ3.19 െ bሻ 

࣬ መ߲ ൌ ොݔ መ߲௫ܑ  ොݕ መ߲௬ܒ  ݖ̂ መ߲௭ܓ                   ሺ3.19 െ cሻ 
࣬ଶ ൌ ොଶܑݔ  ܒොଶݕ  ሺ3.19                           ܓଶݖ̂ െ dሻ 
መ߲ ଶ ൌ መ߲௫

ଶ
ܑ  መ߲௬

ଶ
ܒ  መ߲௭

ଶ
ሺ3.19                      ܓ െ eሻ 

IV. CONSTRUCTION OF  
SQUEEZED STATES 

For the generation of squeezed state we must 
apply the squeeze operator and then coherent 
operator on the ground state of harmonic 
oscillator. Here in this process, we use the 
notation of [15] employed in (3.6). This results 
in 

,ܛ| હۄ ൌ ሺહሻܦ መܵሺܛሻ|ۄ                                        ሺ3.20ሻ 
Notice that መܵሺܛሻ|ۄ represents the squeezed 
vacuum. Following the previous definitions 
and after some algebra we reach at the position 
representation of the squeezed state as 

Ψୱ୯ሺܚሻ ൌ ,ܛ|ܚۦ હۧ ൌ 
1

ߨ
ଷ
ସܥ

 exp ൬െ
݅
2

ܚ ·  ൰ܘ

expሺ݅ܚ · ሻexpܘ ቈെሺݔ െ ሻଶݔ ቆ
1

2ԭ௫ܥ௫
ଶ െ ݄݅௫ቇ 

exp ቈെሺݕ െ ሻଶݕ ቆ
1

2ԭ௬ܥ௬
ଶ െ ݄݅௬ቇ 

exp ቈെሺݖ െ ሻଶݖ ቆ
1

2ԭ௭ܥ௭
ଶ െ ݄݅௭ቇ                ሺ3.21ሻ 

Here, ܚ ൌ ݅ݔ  ܒݕ  ܘ , ܓݖ ൌ ௫݅ 
ܒ௬  ܥ and ,ܓ௭ ൌ  ௭, whereܥ௬ܥ௫ܥ

ఐܥ ൌ ඥԭఐሺ1  2݄݅ఐሻ                                  ሺ3.22 െ aሻ 

݄ఐ ൌ
ఐሻݎଶఐsinhሺݏ
ఐሻݎఐexpሺݎ2

                                        ሺ3.22 െ bሻ 

ߡ ൌ ,ݔ ,ݕ  ݖ
 ଵ andܛ ଶఐ are elements of the vectorsݏ ଵఐ andݏ
ߙ ,ଶ defined in (3.19)ܛ ൌ ሺܚ  ሻܘ݅ √2⁄ , and  

ఐݎ ൌ ට൫ݏଵఐ൯
ଶ  ൫ݏଶఐ൯

ଶ                               ሺ3.23 െ aሻ 

ԭఐ ൌ coshሺݐఐሻ 
ଵఐݏ
ఐݎ

sinhሺݐఐሻ 

ൌ expሺݎఐሻcosଶ ൬
ఐߠ

2
൰  expሺെݎఐሻsinଶ ൬

ఐߠ

2
൰ 

ሺ3.23 െ bሻ 

ఐߠ ൌ tanିଵ ቆ
ଶఐݏ
ଵఐݏ

ቇ                                         ሺ3.23 െ cሻ 

ߡ ൌ ,ݔ ,ݕ  ݖ
For the detailed derivation of the (3.21), please 
refer to the Appendix B. 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

25
-0

6-
11

 ]
 

                             8 / 14

https://mail.ijop.ir/article-1-35-en.html


International Journal of Optics and Photonics (IJOP) Vol. 4, No. 1, Winter-Spring 2010 

17 

A. Further properties of squeezed states 
In this section we will consider two important 
properties of squeezed states; quadrature 
squeezing parameter and Mandel’s ܳ 
parameter. For 1D squeezed states these two 
are defined as scalars, while for the proposed 
3D states we define the generalized quadrature 
squeezing and Mandel’s ܳ parameters in the 
vector form. In the following we start with 
Mandel’s ܳ parameter. 

Mandel’s ܳ “as a measure of departure of the 
variance of the photon number n from the 
variance of a Poisson process” was first 
proposed and calculated by Mandel [22, 23]. 

ܳ ؠ
Δۃ ො݊ଶۄ െ ۃ ො݊ۄ

ۃ ො݊ۄ    ; Δۃ     ො݊ଶۄ

ൌ ۃ ො݊ଶۄ െ ۃ ො݊ۄଶ                        ሺ3.24ሻ 

For an arbitrary state, ܳ can be negative, zero, 
or positive, which respectively infers a super-
Poissonian, Poissonian or sub-Poissonian 
statistics [24]. It should be added here that 
Mandel has shown that, one should expect the 
squeezed states to show sub-Poissonian photon 
statistics through normal detection schemes 
[23].  

For our 3D squeezed states, we define a 
vectorial Mandel’s ܳ parameter, ۿ ൌ
൫ܳ௫, ܳ௬, ܳ௭൯ where ܳఐ is the Mandel’s ܳ 
parameter related to squeezing in the ߡ 
direction. Note that the proposed squeezed 
state here can also be represented as the 
multiplication of three squeezed sates: 

Ψୱ୯ሺܚሻ ൌ Ψୱ୯ሺݔ, ,ݕ ሻݖ
ൌ Ψୱ୯୶

ሺݔሻ Ψୱ୯୷
ሺyሻ Ψୱ୯

ሺݖሻ                         ሺ3.25ሻ 

Ψୱ୯ఐ
ሺ݆ሻ ൌ

1

ߨ
ଵ
ସܥ

 exp ൬െ
݅
2

ఐ൰ߡ exp൫݅ ߡఐ൯ 

exp ቈെሺߡ െ ሻଶߡ ቆ
1

2ԭఐܥఐ
ଶ െ ݄݅ఐቇ   

ߡ ൌ ,ݔ ,ݕ  ሺ3.26ሻ        ݖ

 

Now by using the results of [24] for 1D 
squeezed state, we can show that: 

 

 

 

 

 
Fig. 1 Mandel’s ࡽ parameter plotted versus ࢾ and ࢘ 
for various values of ࢻ. 
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ܳఐ ൌ െ1  
ఐ|ଶሺ݁ଶഈߙ| cosଶ ఐߜ  ݁ିଶഈ sinଶ ఐሻߜ  2 sinhଶ ఐݎ coshଶ ఐݎ

ఐ|ଶߙ|  sinhଶ ఐݎ
 

ߡ ൌ ,ݔ ,ݕ  ሺ3.27ሻ                                                    ݖ

  ఐ are defined in (3.23) andݎ ఐ andߠ

ఐ|ଶߙ| ൌ
1
2

൫ߡ
ଶ  ఐ

ଶ൯                             ሺ3.28 െ ܽሻ 

߶ఐ ൌ tanିଵ ൬
ఐ
ߡ

൰                                  ሺ3.28 െ ܾሻ 

ఐߜ ൌ ఐߠ െ
߶ఐ

2
                                           ሺ3.28 െ ܿሻ 

ߡ ൌ ,ݔ ,ݕ  ݖ

In this case, Mandel’s ܳ parameter for 
squeezing in each direction (ܳఐ  ; ߡ    ൌ ,ݔ ,ݕ  (ݖ
can be negative, zero or positive which means 
the statistics of squeezed states in that 
particular direction is super-Poissonian, 
Poissonian or sub-Poissonian respectively. 
Surface plots of the Mandel’s ܳ parameter are 
illustrated in Figure 1, as a function of ߜ and ݎ, 
while retaining ߙ as a constant. As it can be 
seen, there is no dependence on the angle ߜ 
when ߙ ൌ 0. For this special case, one can 
easily check from (3.27) that ܳఐ ൌ coshଶ ఐݎ 
sinhଶ  .ఐݎ

Similarly, we can also define vectorial 
quadrature operator: 

ଵ܀ ൌ ܺଵܑ  ܻଵܒ  መܼଵܓ ൌ
1
2

൫܉ො  ොற൯    ሺ3.29܉ െ aሻ 

܀ ଶ ൌ ܺଶܑ  ܻଶܒ  መܼଶܓ ൌ
1
2݅

൫܉ො െ ොற൯    ሺ3.29܉ െ bሻ 

where ܉ො and ܉ොற are defined in (2.13). In 1D 
squeezed state variances of quadrature 
operators are measures of squeezing. In fact 
for a 1D squeezed state with quadrature 
መଵ߇ ൌ 1/2ሺ ොܽ  ොܽறሻ and ߇መଵ ൌ 1/2݅ሺ ොܽ െ ොܽறሻ 
operators squeezing exists if [25]: 

መଵ߇Δۃ
ଶۄ ൏

1
4

መଶ߇Δۃ    ݎ    
ଶۄ ൏

1
4

                        ሺ3.30ሻ 

Again for our 3D squeezed state, we can 
calculate variances of elements of vectorial 
quadrature operators from the results of [24] 
for 1D squeezed state: 

ଵ܀Δۃ
ଶۄ ൌ ቀۃΔ ܺଵ

ଶۄ , Δۃ ܻଵ
ଶۄ , Δۃ መܼଵ

ଶۄቁ   ሺ3.31 െ ܽሻ 

܀Δۃ ଶ
ଶۄ ൌ ቀۃΔ ܺଶ

ଶۄ , Δۃ ܻଶ
ଶۄ , Δۃ መܼଶ

ଶۄቁ   ሺ3.31 െ ܾሻ 

መଵ߇Δۃ
ଶۄ ൌ

1
4

݁ଶഈ cosଶ ൬
߶ఐ

2
൰

 ݁ିଶഈ sinଶ ൬
߶ఐ

2
൰൨       ሺ3.31 െ ܿሻ 

መଶ߇Δۃ
ଶۄ ൌ

1
4

݁ଶഈ sinଶ ൬
߶ఐ

2
൰

 ݁ିଶഈ cosଶ ൬
߶ఐ

2
൰൨   ሺ3.31 െ ݀ሻ 

߇ ൌ ܺ, ܻ, ܼ; ߡ  ൌ ,ݔ ,ݕ  ݖ

 
Fig. 2 Squeeze parameters versus ࣘ and ࢘. 

Thus for 3D squeezed state, in direction 
ߡ ൌ ,ݔ ,ݕ  :squeezing exists if ݖ

መଵ߇Δۃ
ଶۄ ൏

1
4

  or ۃΔ߇መଶ
ଶۄ ൏

1
4

߇   ൌ ܺ, ܻ, ܼ     ሺ3.32ሻ  

Plots of squeeze parameters (3.31c) and 
(3.31d) versus ߶ and ݎ are shown in Figs. 2 
and 3, respectively as surface and contour 
diagrams. As it can be seen, squeezed states 
happen over the domains in which (3.32) 
holds, and any of the squeeze parameters fall 
under ଵ

ସ
. Evidently, the transformation ݎ ՜ െݎ 

switches the subplots for ۃΔ߇መଵ
ଶۄ and ۃΔ߇መଶ

ଶۄ, 
due to the algebraic forms of the expressions 
(3.31c) and (3.31d).  
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Fig. 3 Contours of Squeeze parameters versus ࣘ 
and ࢘. 

 
Fig. 4 The domain of squeezed states (filled with 
contours) as separated from de-squeezed states 
(white). 

Furthermore, Figure 4 shows the domain of 
squeezed ۃΔ߇መଵ,ଶ

ଶۄ ൏ ଵ
ସ
 versus de-squeezed 

መଵ,ଶ߇Δۃ
ଶۄ  ଵ

ସ
 states, respectively, filled in with 

color contours, and left blank. The borders 
could be explicitly found by solving (3.31c) 
and (3.31d) for ۃΔ߇መଵ,ଶ

ଶۄ ൌ ଵ
ସ
. This gives after 

simplifications to the fairly compact 
expression 

݁േଶഈ ൌ tanଶ ൬
߶ఐ

2
൰ ; ߡ ൌ ,ݔ ,ݕ  ሺ3.32ሻ           ݖ

which defines the borders separating the 
squeezed and de-squeezed states. 

V. CONCLUSIONS 
In this paper, we presented new closed-form 
expressions for coherent states and squeeze 
operators of a generalized harmonic oscillator 
potential in three spatial dimensions. We 
defined proper creation and annihilation 
operators and succeeded in presenting simple 
expressions for the corresponding 
displacement and squeeze operators. 

APPENDIX A: DERIVATION OF WIGNER 
FUNCTION OF 3D HARMONIC OSCILLATOR 

The position representation of |݉, ݊,  state ۄ݈
3D harmonic oscillator reads: 

Ψሺܚሻ ൌ ,݉|ܚۦ ݊, ݈ۧ

ൌ
1

√2ାା݊! ݉! ݈!
ቆ

ଶߢ

ߨ
ቇ

ଷ
ସ

exp ൬െ
1
2

 ଶ൰ݎଶߢ

HሺݔߢሻHሺݕߢሻHሺݖߢሻ                                      ሺA. 1ሻ 

Placing the above in the definition of Wigner 
function in (2.5) gives: 

W|,,ۄሺܚ, ሻܘ ൌ ൬
1

ߨ2
൰

ଷ 1
2ାା݊! ݉! ݈!

ቆ
ଶߢ

ߨ
ቇ

ଷ
ଶ
 

ම ݀ଷߞ
ஶ

ିஶ

൜exp ൬െ
݅


ܘ · ા൰ exp ൬െ
1
2

ଶߢ ቚܚ െ ଵ
ଶ
ાቚ

ଶ
൰ 

exp ൬െ
1
2

ଶߢ ቚܚ  ଵ
ଶ
ાቚ

ଶ
൰ H ߢ ൬ݔ െ

1
2

 ௫൰൨ߞ

H ߢ ൬ݔ 
1
2

௫൰൨ߞ H ߢ ൬ݕ െ
1
2

 ௬൰൨ߞ

H ߢ ൬ݕ 
1
2

௬൰൨ߞ H ߢ ൬ݖ െ
1
2

 ௭൰൨ߞ

H ߢ ൬ݖ 
1
2

௭൰൨ൠߞ ൌ ൬
1

ߨ
൰

ଷ
௫ܫ · ௬ܫ · .ܣ௭            ሺܫ 2ሻ 

௫ܫ ൌ
1

2ାଵ݊!
ඨߢଶ

ߨ
න ௫ߞ݀ ൜exp ൬െ

݅


௫൰ߞ௫
ஶ

ିஶ

 

exp ቈെ
ଶߢ

2
൬ݔ െ

1
2

௫൰ߞ
ଶ

  exp ቈെ
ଶߢ

2
൬ݔ 

1
2

௫൰ߞ
ଶ

 

H ߢ ൬ݔ െ
1
2

௫൰൨ߞ H ߢ ൬ݔ 
1
2

.ܣ௫൰൨ൠ           ሺߞ 3ሻ 
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௬ܫ ൌ
1

2ାଵ݉!
ඨߢଶ

ߨ
න ௬ߞ݀ ൜exp ൬െ

݅


௬൰ߞ௬
ஶ

ିஶ

 

exp ቈെ
ଶߢ

2
൬ݕ െ

1
2

௬൰ߞ
ଶ

 exp ቈെ
ଶߢ

2
൬ݕ 

1
2

௬൰ߞ
ଶ

 

H ߢ ൬ݕ െ
1
2

௬൰൨ߞ H ߢ ൬ݕ 
1
2

.ܣ௬൰൨ൠ       ሺߞ 4ሻ 

௭ܫ ൌ
1

2ାଵ݈!
ඨߢଶ

ߨ
න ௭ߞ݀ ൜exp ൬െ

݅


௭൰ߞ௭
ஶ

ିஶ

 

exp ቈെ
ଶߢ

2
൬ݖ െ

1
2

௭൰ߞ
ଶ

 exp ቈെ
ଶߢ

2
൬ݖ 

1
2

௭൰ߞ
ଶ

 

H ߢ ൬ݖ െ
1
2

௭൰൨ߞ H ߢ ൬ݖ 
1
2

.ܣ௭൰൨ൠ              ሺߞ 5ሻ 

Consider for example the first integral ܫ௫. By 
changing ߞߢ௫ ՜  :௫ we haveߞ

௫ܫ ൌ
expሺെߢଶݔଶሻ

!2ାଵ݊ߨ√
න     ௫ߞ݀
ஶ

ିஶ

 

ቊexp ቆെ
௫ߞ௫݅

ߢ
െ

௫ߞ
ଶ

4
ቇ ܪ ൬ݔߢ െ

௫ߞ

2
൰ ܪ ൬ݔߢ


௫ߞ

2
൰ቋ                                                             ሺܣ. 6ሻ 

and now by using the algebraic manipulation:  

െ
1
4

௫ߞ
ଶ െ

݅
ߢ

 ௫ߞ௫

ൌ െ ൬
1
2

௫൰ߞ
ଶ

െ 2
௫ߞ

2
 ൬

௫݅

ߢ
൰ െ ൬

௫݅

ߢ
൰

ଶ
െ ቀ

௫

ߢ
ቁ

ଶ
 

ൌ െ ൬
௫ߞ

2
 ݅

௫

ߢ
൰

ଶ
െ ቀ

௫

ߢ
ቁ

ଶ
                           ሺܣ. 7ሻ 

and change of variables ቀೣ
ଶ

 ݅ ೣ


ቁ ՜  : ௫ߦ

௫ܫ ൌ
exp െሺݔߢሻଶ െ ቀ௫

ߢቁ
ଶ

൨

2݊!
1

ߨ√
න ௫ߦ݀

ஶ

ିஶ

 

ቄexpሺെߦ௫
ଶሻH ቀݔߢ  ௫ߦ െ ݅

௫

ߢ
ቁ H ቀݔߢ െ ௫ߦ

 ݅
௫

ߢቁቅ                                  ሺܣ. 8ሻ 

from symmetry of Hermite polynomials we 
know that Hሺെߦሻ ൌ ሺെ1ሻHሺߦሻ. So 

௫ܫ ൌ ሺെ1ሻ
exp െሺݔߢሻଶ െ ቀ௫

ߢቁ
ଶ

൨

2݊!
1

ߨ√
න ௫ߦ݀

ஶ

ିஶ

 

ቄexpሺെߦ௫
ଶሻH ቀߦ௫ െ ݅

௫

ߢ
 ቁݔߢ H ቀߦ௫ െ ݅

௫

ߢ
െ .ܣቁቅ                                  ሺݔߢ 9ሻ 

Also it is known that:  

1
2݊!

1
ߨ√

න ߦଶሻHሺߦሼexpሺെߦ݀  ߦଵሻHሺߦ  ଶሻሽߦ
ஶ

ିஶ
ൌ Lሺെ2ߦଵߦଶሻ                     ሺܣ. 10ሻ 

where L is the Laguerre polynomial of order 
n. Therefore 

௫ܫ ൌ ሺെ1ሻexp െሺݔߢሻଶ െ ቀ
௫

ߢ
ቁ

ଶ
൨ 

L ൜2 ቀ
௫

ߢ
ቁ

ଶ
 ሺݔߢሻଶ൨ൠ                         ሺܣ. 11ሻ 

Repeating the same procedure for Iy and Iz 
results in: 

W|,,ۄሺܚ, ሻܘ ൌ 

ሺെ1ሻାା

ሺߨሻଷ exp െ ቀ
ܘ

ߢ
ቁ

ଶ
െ ሺܚߢሻଶ൨ 

L ൜2 ቀ
௫

ߢ
ቁ

ଶ
 ሺݔߢሻଶ൨ൠ 

L ቊ2 ቈቀ
௬

ߢ
ቁ

ଶ
 ሺݕߢሻଶቋ 

L ൜2 ቀ
௭

ߢ
ቁ

ଶ
 ሺݖߢሻଶ൨ൠ                        ሺܣ. 12ሻ 

APPENDIX B: DERIVATION OF POSITION 
PEPRESENTATION OF 3D SQUEEZED STATE 
 
From (2.8) and by using the notation of [15] 
we can write the 3D displacement operator in 
this new form: 

ሺહሻܦ ൌ  ௭ሻߙ௭ሺܦ௬൯ߙ௬൫ܦ௫ሻߙ௫ሺܦ

ఐሻߙఐሺܦ ൌ exp ൬െ
݅
2

ഈ൰ߡ exp൫݅ഈߡ൯̂exp൫െߡ መ߲ఐ൯  

ߡ ൌ ,ݔ ,ݕ .ܤሺ                                                               ݖ 1ሻ 

where ߡ ̂and መ߲ఐ are defined in (3.11) and ߡ and 
 ഈ are define above the (3.23). Furthermore as
it is shown in (3.10) 3D squeeze operator can 
also be shown to be: 
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መܵሺܛሻ ൌ መܵ௫ሺݏ௫ሻ መܵ௬൫ݏ௬൯ መܵ௭ሺݏ௭ሻ 

መܵఐሺݏఐሻ ൌ exp െݏଵఐߡ ߲̂ መఐ  ݅
1
2

ଶఐݏ ቀߡଶ̂  መ߲ఐ
ଶቁ൨  

ߡ  ൌ ,ݔ ,ݕ .ܤሺ                                                              ݖ 2ሻ 

Our proposed squeezed state is constructed 
from ground state of a 3D harmonic oscillator 
(vacuum state) as in (3.20). So its position 
representation can be calculated from: 

Ψୱ୯ሺܚሻ ൌ ,ܛ|ܚۦ હۧ ൌ ሺહሻܦ መܵሺܛሻܚۦ|ۧ 

ൌ ሺહሻܦ መܵሺܛሻ ൬
1
ߨ

൰
ଷ
ସ

exp ቈെ
ଶݔ  ଶݕ  ଶݖ

2
        ሺܤ. 3ሻ 

From the previously used commutation relation it 
is obvious that: 

Ψୱ୯ሺܚሻ ൌ ൬
1
ߨ

൰
ଷ
ସ

ܦ௫ሺߙ௫ሻ መܵ௫ሺݏ௫ሻexp ൬െ
1
2

 ଶ൰൨ݔ

ܦ௬൫ߙ௬൯ መܵ୷൫ݏ௬൯exp ൬െ
1
2

 ଶ൰൨ݕ

ܦ௭ሺߙ௭ሻ መܵ௭ሺݏ௭ሻexp ൬െ
1
2

.ܤଶ൰൨                         ሺݖ 4ሻ 

Using [15] gives: 

ఐሻߙఐሺܦ መܵఐሺݏఐሻ݁ݔ ൬െ
1
2

ଶ൰ߡ

ൌ
1
ఐܥ

 exp ൬െ
݅
2

ఐ൰ߡ exp൫݅ ߡఐ൯ 

exp ቈെሺߡ െ ሻଶߡ ቆ
1

2ԭఐܥఐ
ଶ െ ݄݅ఐቇ                  ሺܤ. 5ሻ 

ߡ    ൌ ,ݔ ,ݕ  ݖ

which directly results in the position 
representation of the squeezed state as: 

Ψୱ୯ሺܚሻ ൌ
1

ߨ
ଷ
ସܥ

 exp ൬െ
݅
2

ܚ · ൰ܘ expሺ݅ܚ ·  ሻܘ

exp ቈെሺݔ െ ሻଶݔ ቆ
1

2ԭ௫ܥ௫
ଶ െ ݄݅௫ቇ 

exp ቈെሺݕ െ ሻଶݕ ቆ
1

2ԭ௬ܥ௬
ଶ െ ݄݅௬ቇ 

exp ቈെሺݖ െ ሻଶݖ ቆ
1

2ԭ௭ܥ௭
ଶ െ ݄݅௭ቇ                  ሺܤ. 6ሻ 
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