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ABSTRACT— In the present study, temporal 

behavior of entanglement between photonic 

binomial distributions and a two-level atom in a 

leaky cavity, in equilibrium with the 

environment at a temperature T, is studied. In 

this regard, the master equation is solved in the 

secular approximation for the density matrix, 

when the initial photonic distribution is 

binomial, while the atomic states obey the 

Boltzmann distribution. The atom-photon 

density matrix so calculated is then used to 

compute the negativity, as a measure of 

entanglement. The behavior of atom-photon 

entanglement is, consequently, determined as a 

function of time and temperature. To justify the 

behavior of atom-photon entanglement, 

moreover, we employ the total density matrix to 

compute and analyze the time evolution of the 

initial photonic binomial probability 

distribution. Our results, along with 

representative figures reveal that the atom-

photon degree of entanglement exhibits 

oscillations while decaying with time and 

asymptotically vanishes. It is further 

demonstrated that an increase in the 

temperature gives rise to a decrease in the 

entanglement. The finer characteristics of the 

temporal behavior of the corresponding 

probability distribution and, consequently, the 

atom-photon entanglement is also given and 

discussed. 
 

KEYWORDS: Atom-photon entanglement, 

Cavity damping, Master equation, Photonic 

binomial distribution. 

I. INTRODUCTION 

Quantum entanglement [1] has been by now 

recognized as one of the most fundamental and 

intriguing features of composite quantum 

systems. In fact, quantum entanglement has 

been employed to develop new means of 

processing [2], storage [3], transmission [4], 

etc. [5], [6] of information. It is therefore of 

great interest to find physical systems where the 

entanglement can be generated, manipulated 

and controlled. In the last decades, there have 

been different proposals to produce entangled 

states, such as those based on atomic systems 

[7], quantum electrodynamics cavities [8] and 

atom-photon interactions [9], [10]. The vast 

interest in the entanglement of atoms and 

photons stems from the fact that the former are 

reliable units for long time storage and 

processing of information [11], while the latter 

form rapid carriers of quantum information 

[12]. In addition, generation of atom-photon 

entanglement has been experimentally 

implemented through interaction of a single 

photon with a trapped atom [13]. What is 

missing in these treatments, however, is the 

effect of the environment, modeled as a lossy 

cavity, on the temporal behavior of 

entanglement at any temperature. It is therefore 

the main purpose of the present report to 

combine the notions of Jaynes-Cummings 

model (JCM) [14], [15], cavity damping [16]-

[18] and negativity [19] to investigate atom-

photon entanglement. In the present treatment, 

however, the so-called phase damping which is 
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responsible for the decay of atomic states [20] 

is ignored. To be more specific, in our treatment 

it is assumed that the photons are statistically 

binomial [21], while the atoms obey the 

Boltzmann distribution [22]. As it is well 

known, the JCM, often expressed in the rotating 

wave approximation, adequately describes the 

interaction between a single mode quantized 

electromagnetic field and a two-level atom. As 

we have already mentioned, the atom-photon 

interaction normally takes place in a lossy 

cavity, so that the state of the total system has 

to be described by a mixed density operator [23] 

which satisfies the master equation [24]. The 

solution of the master equation may then be 

employed to extract any desired information, in 

particular, the degree of atom-photon 

entanglement [25]. 

As is well established, to quantify the 

entanglement between elements of a composite 

system in a mixed ensemble, the measure of 

negativity, derived from the partially 

transposed density matrix, is most appropriate 

[26], [27]. In this paper, therefore, the 

negativity is used to study the temporal 

behavior of entanglement between a two-level 

atom and a binomial photonic distribution, 

based on the JCM, in a dissipative cavity. The 

cavity is assumed to be in thermal equilibrium 

with the environment at a temperature T. The 

manner of solving the corresponding master 

equation for the total density operator is 

introduced and used to determine the evolution 

of the initial photonic binomial distribution as 

well as the negativity. A brief account of the 

results shall appear in the next paragraph where 

the organization of the article is presented.  

The remainder of this article is organized as 

follows. In section ΙΙ, the physical model and 

the corresponding master equation for the 

density matrix are presented. In section III we 

discuss the manner of solving the 

corresponding master equation in the secular 

approximation, providing an efficient 

algorithm to evaluate the negativity, as 

functions of time and temperature. To this end, 

the initial state of the total system is also 

presented and discussed in this section. The 

results of our numerical calculation for the time 

evolution of the initial binomial photonic 

distribution, as well as the negativity, are 

presented in section ΙV. In this section we also 

present illustrative figures from which one can 

easily analyze the effects of temperature on the 

entanglement. Consequently, a discussion of 

the temporal behavior of atom-photon 

entanglement is also provided in this section. 

Along these lines, we also furnish a discussion 

on the atom-photon entanglement in the 

extreme limits of the binomial distributions, 

namely, the Fock and coherent states. Finally, 

in section V, the main features of the article are 

summarized and some concluding remarks are 

made.  

II. THE PHYSICAL MODEL AND 

MASTER EQUATION 

The system under consideration here consists of 

a single-mode quantized field of angular 

frequency , interacting with a two-level atom, 

inside a dissipative cavity, in equilibrium with 

the environment at a temperature, T. The atomic 

ground and excited states are denoted by g  

and e , respectively. In this model, the photons 

dissipate to the environment through imperfect 

conducting cavity walls. To account for the 

field dissipation, it is customary to assume that 

the walls of cavity form a reservoir of simple 

harmonic oscillators which, in turn, is 

minimally coupled to the field. Eliminating the 

reservoir contributions from the dynamical 

equation for the total density operator, by 

partial tracing over the reservoir states, one 

obtains the master equation for the atom-field 

system at a temperature, T, as [22], [24], 

† † †

† † †
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where 
†( )a a  denotes the photonic annihilation 

(creation) operator and , the density operator 

for the total system of atom-photon is in the 

interaction picture. The decay constant, , is 
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related to the quality factor of the cavity Q, by 

the relation / Q   [22] and 
/

1

1
th kT

n
e 


h

 

is the number of thermal bosons of the reservoir 

at a temperature T, where h  and k are the 

Planck and Boltzmann constants, respectively. 

For simplicity, the field is assumed to be in 

resonance with the atoms, 0( )   and thus 

the atom-photon interaction Hamiltonian in the 

interaction picture is given by, 

†( ),IH a e g a g e h  (2) 

where  determines the atom-photon coupling 

strength. To avoid a misconception that may 

arise when the secular approximation (see the 

discussion right after Eq. (7)) is employed, we 

call attention to the essence of the rotating wave 

approximation in which the energy non-

conserving operators are disregarded [28]. The 

manner of solving Eq. (1), with the interaction 

given in Eq. (2) is the subject of next section. 

III. ATOM-PHOTON ENTANGLEMENT 

In this report, the measure of negativity, defined 

as, [19], [27], 

max(0, ),N i

i

E    
(3) 

is used to investigate the atom-photon 

entanglement. The i s in Eq. (2) are the 

eigenvalues of the partially transposed density 

matrix, denoted by 
PT . At this point it is worth 

mentioning that the transposition can be made 

relative to any one of the subsystems [19]. The 

state of the composite system is necessarily 

entangled if 0NE   but it may or may not be 

entangled if 0NE 
 
[19]. 

 In this paper, we assume that the atom is 

initially in thermal equilibrium with the cavity 

at the temperature T. Therefore, the atomic state 

is distributed among the ground and excited 

states, determined by the Boltzmann factor, 
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On the other hand, we assume that initially the 

photons are prepared with a binomial 

distribution, using the experimental setup 

presented in [29], then delivered into the cavity 

via a very small aperture. Then the photonic 

initial state is,  

(0) , , ,F p M p M   (5) 

where the binomial state, , ,p M  is an 

expansion in terms of Fock states, { }n , as, 

1
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 (6) 

In Eq. (6), 0 1p   represents the probability 

of occurring a photon in the expansion, while M 

denotes the maximum photon number of the 

binomial state [21]. The mean photon number 

is then given by n pM . From the definition, 

it is clear that the binomial state describes a 

photonic state between two extremes of a Fock 

state and a coherent one. In fact, the number 

state of M (zero) photons results when, 

1(0), , ( 0 ),p p M M   while the 

coherent state is the result of letting, 

0,p M   in Eq. (6) [21]. 

Parenthetically, we mention that a thorough 

examination of the entanglement between 

atoms and a photonic coherent state, in a lossy 

cavity, is made in Ref. [30].  

The state of the composite system is initially 

given as, 

(0) (0) (0),A F     (7) 
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which describes a pure and separable state. In 

order to calculate the negativity, the first step is 

to perform the unitary transformation, 
/ /

( ) ( ) ,I IiH t iH tW t e t e 


h h
 on Eq. (2), giving a 

simpler equation for ( )W t . In fact, when use is 

made of the bases of IH  and assuming a weak, 

relative to the atom-photon coupling, damping 

such that  ?  (the well-known secular 

approximation [31]), the set of coupled 

equations for the transformed density matrix 

elements separates into a set of independent 

equations for the off-diagonal elements of 

( )W t . The set of equations for the off-diagonal 

elements of ( )W t  may be analytically solved, 

straightforwardly. Although we have used these 

solutions in the calculation of our final results, 

for the sake of brevity, we do not present them 

here. The off-diagonal elements of the original 

density operator then read, 
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In Eqs. (8) through (12), , 0,1,2,...m n   and 

m n . On the other hand, the diagonal 

elements satisfy a set of 2M   coupled, 

recursive first-order differential equations. To 

the best of our knowledge, there is no analytical 

solution for the diagonal elements and we have 

to employ numerical methods. It is worth 

mentioning that the foregoing procedure is 

quite general and can be applied to any such 

systems [30], the difference being in the 

specification of the initial states. Having 

determined the elements of the original density 

matrix, we can partially transpose it, relative to 

one of the subsystems, with ease. Moreover, the 

large dimensions of the density matrix force us, 

again, to resort to numerical calculation of its 

eigenvalues. We emphasize that the resulting 

density matrix straight forwardly gives the time 

evolution of any initial quantity, photonic, 

atomic or the composition, for the binomial 

probability distribution. Related to the present 

investigation, and as an example, one can easily 

compute the time evolution of the initial 

photonic probability distribution, 

( , ) [ ( , )]nP t T Tr n n t T . In the next section 

these points are used to investigate the time 

evolution of the binomial distribution as well as 

the behavior atom-photon entanglement. 

IV. NUMERICAL RESULTS AND 

DISCUSSION 

Having described the manner of calculating the 

density matrix for the composite atom-photon 

system (and its partially transposed one) we are 

now in the position of investigating the 

behavior of the photonic probability 

distribution and the corresponding 

entanglement. The result of our calculation of 

the evolution of the initial probability 

distribution is illustrated in Fig. 1. In this typical 

figure and the following ones we have set the 

field frequency at 1   THz, the damping 

constant, 0.03    and time is scaled as, 

t  . In this particular figure the temperature 
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is taken as, 4T K and the initial photon mean 

number as, 2n  . The probability of 

occurrence of one photon when M photons are 

already present, p, can be experimentally 

measured [29] and, accordingly, we have 

chosen it as 1/ 3p   . This choice then selects 

the limit of summation in Eq. (6) from 

M n p . 

  

 
Fig. 1. Photonic probability distribution, ( , )nP T  

versus n  and scaled time, , along with the 

corresponding density plot, at a fixed temperature of

4T K . 

From this figure it is evident that the probability 

of any photonic state, except the vacuum, is a 

descending function of time and vanishes 

asymptotically. The diminishingly small initial 

probability of no photon in the distribution, 

however, is an ascending function of time and 

approaches unity asymptotically. This 

observation suggests that after sufficiently long 

time the field falls into its vacuum state, an 

indication of separability of atom-photon states. 

In correspondence to this figure, we illustrate 

the behavior of negativity, as a measure of 

atom-photon entanglement, in Fig. 2.  

 

 
Fig. 2. Negativity versus scaled time,  and 

temperature, T, along with the corresponding density 

plot. 

Such general features of atom-photon 

entanglement are attributed to the physical fact 

that atoms and photons periodically exchange 

energy, leading to oscillations. Meanwhile, the 

field energy is gradually lost through the 

dissipative cavity, giving rise to a decaying 

oscillation in the temporal behavior of the 

entanglement. We further observe that the 

degree of entanglement, while oscillating, 

grows at earlier times reaching its maximal 

value. This is due to the fact that as the atoms 

start interacting with the reservoir modes, the 

ensemble tends towards a mixed one. On the 

other hand, an increase in the temperature 

results a reduction in the maximal atom-photon 

entanglement at any time. The atom-photon 
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entanglement then disappears as temperature 

rises. This demeanor is physically due to the 

fact that an increase in the temperature gives 

rise to the excitation of more atom-photon 

states with almost equal probabilities. In the 

limit of extremely high temperatures, they 

become exactly equal and the system 

approaches a fully mixed state, with no 

entanglement [32]. For illustration of the finer 

detail of entanglement between atoms and 

binomial photonic states in a lossy cavity, we 

present Figs. 3 and 4. The probability of photon 

occurrence in these two figures is again taken 

as 1 3p  . Figure 3 is devoted to the time 

(scaled) variation of negativity for different 

initial photon mean number at a fixed 

temperature of 4K, while in Fig. 4 the same is 

done for various temperature and a fixed initial 

photon mean number of 2n  . 

Fig. 3. Time evolution of negativity for initial mean 

photon numbers of 2n   (solid curve, black), 

3n   3 (small-dashed curve, red) and 4n   (large-

dashed curve, blue).
 

Fig. 4. Time evolution of negativity at temperatures 

of 0T K  (solid curve, black), 4T K  (small-

dashed curve, red) and 8T K  (large-dashed curve, 

blue) for the initial mean photon number of 2n  . 

From Fig. 3 it is evident that for a lower initial 

mean photon number the system exhibits a 

larger degree of entanglement while diminishes 

at a slower pace. On the other hand, Fig. 4 

indicates that the degree of atom-photon 

entanglement is by far larger and is retained for 

a longer time as the temperature is decreased. 

It is also of interest to examine the limiting 

cases of the binomial distribution, as given in 

Eq. (6) and discussed right after wards. To this 

end, we set 1p ;  in our numerical computation 

to study the atom-photon entanglement when 

the photon state is initially a Fock one. The 

result is depicted in Fig. 5.  

 

Fig. 5. Negativity versus scale time,  , and temperature, 

T, for the case of an initial photonic Fock state, 6 . 

Again, the general reasoning for the behavior of 

atom-photon entanglement, as we discussed 

earlier, still holds. However, in this case the 

degree of entanglement reduces and vanishes 

more rapidly, due to the presence of just one 

photonic state initially. Moreover, for the other 

extreme case of photonic vacuum state, 0 , we 

set 0p ;  in our calculations. The result is 

illustrated in Fig. 6. We observe that at earlier 

times an increase in the temperature leads to a 

decrease in the degree of entanglement, 

reaching a steep dip, followed by an increase 

and asymptotically vanishes. Even though the 

same lines of argument also apply here, we 

suffice to elaborate on the presence of the dip. 

This phenomenon is due to the fact that at 

earlier times and absolute zero temperature, the 

system is in a pure entangled state. As the 
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temperature rises the ensemble becomes a 

mixed but separable one. At higher 

temperature, however, the ensemble turns into 

a mixed entangled one and ends up in a fully 

mixed state. As is expected, the degree of 

entanglement is much lower than the binomial 

case.  

 
Fig. 6. Negativity versus scaled time, , and 

temperature, T, for the case of an initial photonic 

Fock state, 0 . 

We end this section by presenting the behavior 

of atom-photon entanglement for the other 

limiting case of the binomial distribution, 

namely, the photonic coherent state. This aim is 

achieved by letting 0.01p   and 200M   

(giving a photon mean number of 2n  ) in our 

calculations. The atom-photon degree of 

entanglement, as a function of time and 

temperature, is illustrated in Fig. 7.  

 
Fig. 7. Negativity versus scaled time, , and 

temperature, T, for the case of an initial photonic 

coherent state with initial mean photon number of 

2n  . 

From Fig. 7 it is noticed that although the 

maximal degree of entanglement is practically 

the same as the binomial distribution, the totally 

mixed state is reached at higher temperatures. 

Moreover, it takes a much longer time for the 

entanglement to disappear in the coherent case, 

as compared to the binomial distribution. This 

observation is again due to the fact that more 

photonic states participate in the entanglement 

when the photonic state is a coherent one [30]. 

V. SUMMARY AND EPILOGUE 

The present report is devoted to the study of the 

entanglement for a mixed ensemble of two-

level atoms and photons in a lossy cavity. The 

mixture is specified by the atomic Boltzmann 

distribution at an equilibrium temperature, T, 

while the photons are externally injected into 

the cavity with binomial distribution. Since the 

ensemble is a mixed one, we take advantage of 

the concept of negativity to determine the 

temporal behavior of the degree of atom-photon 

entanglement. To this end, we first demonstrate 

how the master equation, involving the Jaynes-

Cummings model and cavity damping, is 

solved for the total density matrix. From the so 

computed total density matrix we then 

determine the time evolution of the initial 

probability distribution as well as the degree of 

atom-photon entanglement. As the limiting 

extremes of the binomial photonic distribution, 

we have also examined the atom-photon 

entanglement for a coherent and Fock states. 

Even though a full discussion of the results is 

presented in the main body of the article, in 

what follows we outline the more important 

points. 

 At every temperature, the atom-photon 

degree of entanglement starts from zero, 

oscillates at short times reaching a 

notable maximum.  

 The entanglement diminishes as time 

passes and asymptotically vanishes. As 

a result, information is periodically 
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shared by atoms and photons and 

eventually becomes local (separable). 

  Our analysis also quantitatively 

confirms the well-known fact that, at a 

fixed time, an increase in the 

temperature reduces the maximal value 

of atom-photon entanglement and 

disappears at higher temperatures. This 

point is in conformity with the fact that 

at high enough temperatures 

information becomes localized. 

 When the photonic initial state is a 

single Fock state, the degree of atom-

photon entanglement is drastically 

reduced. 

 As for the case of coherent initial state, 

the maximal degree of entanglement is 

almost the same as in the case of 

binomial distribution. The manner of 

approaching separability, both in time 

and temperature, is quite different for 

the two cases.  

As a final point, it is worth mentioning that with 

a setup similar to the one given in [33], one can, 

in fact, make a measurement on the atomic 

state. Meanwhile, a photon detector, placed 

properly, can specify the photonic states. The 

results of the two measurements indeed give an 

indication of atom-photon entanglement.  

REFERENCES 

[1] V. Vedral, “Quantum entanglement,” Nature 

Physics, Vol. 10, pp. 256-258, 2014.  

[2] J. Bae, “Designing quantum information 

processing via structural physical 

approximation,” Rep. Prog. Phys. Vol. 80, pp. 

104001 (1-53), 2017. 

[3] K.R. Ferguson, S.E. Beavan, J.J. Longdell, and 

M.J. Sellars, “Generation of light with 

multimode time-delayed entanglement using 

storage in a solid-state spin-wave quantum 

memory,” Phys. Rev. Lett. Vol. 117, pp. 

020501 (1-5), 2016. 

[4] T.E. Northup and R. Blatt, “Quantum 

information transfer using photons,” Nature 

Photon. Vol. 8, pp. 356-363, 2014. 

[5] N. Horiuchi, “Quantum communications: 

long-distance teleportation,” Nature Photon. 

Vol. 9, pp. 832-835, 2015. 

[6] Q-C. Sun, Y–L. Mao, S. – J. Chen, W. Zhang, 

Y–F. Jiang, Y–B. Zhang, W–J. Zhang, S. Miki, 

T. Yamashita, H. Terai, X. Jiang, T – Y. Chen, 

L– X. You, X– F. Chen, Z. Wang, J. – Y. Fan, 

Q. Zhang, and J–W. Pan, “Quantum 

teleportation with independent sources and 

prior entanglement distribution over a 

network,” Nature Photon. Vol. 10, pp. 671-

676, 2016. 

[7] L. Slodička, G. Hétet, N. Röck, P. Schindler, 

M. Hennrich, and R. Blatt, “Atom-atom 

entanglement by single-photon detection,” 

Phys. Rev. Lett. Vol. 110, pp. 083603 (1-5), 

2013. 

[8] J.A. Mlynek, A.A. Abdumalikov, Jr. J.M. Fink, 

L. Steffen, M. Baur, C. Lang, A.F. van Loo, 

and A. Wallraff, “Demonstrating W-type 

entanglement of Dicke states in resonant cavity 

quantum electrodynamics,” Phys. Rev. A, Vol. 

86, pp. 053838 (1-5), 2012. 

[9] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, 

“A quantum gate between a flying optical 

photon and a single trapped atom,” Nature, 

Vol. 508, pp. 237-240, 2014. 

[10] M. Sahrai and V. Tahmoorian Askari 

Boroojerdi, “Dynamical behavior of atom-

photon entanglement for a four-level atom near 

the band edge of a 3D-anisotropic photonic 

crystal,” Quantum Inf Process, Vol. 16, pp. 145 

(1-13), 2017. 

[11] L. Li, Y.O. Dudin, and A. Kuzmich, 

“Entanglement between light and an optical 

atomic excitation,” Nature, Vol. 498, pp. 466-

469, 2013. 

[12] D.N. Matsukevich and A. Kuzmich, “Quantum 

state transfer between matter and light ,” 

Science, Vol. 306, pp. 663-666, 2004. 

[13] J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, 

J. Vrana, K. Saucke, C. Kurtsiefer, and H. 

Weinfurter, “Observation of entanglement of a 

single photon with a trapped atom, ” Phys. Rev. 

Lett. Vol. 96, pp. 030404 (1-4), 2006. 

[14] A.B. Klimov and S.M. Chumakov, Quantum 

Optics, Wiley-Vch, 2009. 

[15] B.T. Torosov, S. Longhi, and G. Della Valle, 

“Mixed Rabi Jaynes-Cummings model of a 

three-level atom interacting with two quantized 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

25
-0

6-
10

 ]
 

                             8 / 10

https://mail.ijop.ir/article-1-322-fa.html


International Journal of Optics and Photonics (IJOP)  Vol. 13, No. 1, Winter-Spring 2019 

51 

fields,” Opt. Commun., Vol. 346, pp. 110-114, 

2015. 

[16] A–S. F. Obada, H.A. Hessian, and A–B. A. 

Mohamed, “Entropy and entanglement in the 

Jaynes-Cummings model with effects of cavity 

damping,” J. Phys. B: At. Mol. Opt. Phys. Vol. 

41, pp. 135503 (1-7), 2008. 

[17] A–S. F. Obada, H. A. Hessian, and A–B. A. 

Mohamed, “Effects of cavity damping on the 

entanglement for a three-level atomic system,” 

J. Mod. Opt. Vol. 56, pp. 881-885, 2009. 

[18] A–S. F. Obada, H.A. Hessian, and A–B. A. 

Mohamed, “The effects of thermal photons on 

entanglement dynamics for a dispersive 

Jaynes-Cummings model,” Phys. Lett. A, Vol. 

372, pp. 3699-3706, 2008. 

[19] R. Horodecki, P. Horodecki, M. Horodecki, 

and K. Horodecki, “Quantum entanglement,” 

Rev. Mod. Phys. Vol. 81, pp. 865-942, 2009. 

[20] A–S. F. Obada, H.A. Hessian, and A–B. A. 

Mohamed, “Influence of the phase damping for 

two-qubits system in the dispersive reservoir,” 

Quantum Inf. Process, Vol. 12, pp. 1947-1956, 

2013. 

[21] H. Hekmatara and M.K. Tavassoly, “Sub-

Poissonian statistics, population inversion and 

entropy squeezing of two two-level atoms 

interacting with a single-mode binomial field: 

intensity dependent coupling regime,” Opt. 

Commun. Vol. 319, pp. 121-127, 2014. 

[22] M.O. Scully and M.S. Zubairy, Quantum 

Optics, Cambridge University Press, 2001.  

[23] N. Foroozani and M.M. Golshan, 

“Entanglement of Λ-atom and thermal photons 

in a double-band photonic crystal,” J. Stat. 

Mech. Vol. 46, pp. 02007 (1-11), 2010. 

[24] H.J. Carmichael, Statistical Methods in 

Quantum Optics 1: Master Equations and 

Fokker-Planck Equations, Springer, 2002. 

[25] M.R. Abbasi and M.M. Golshan, “Thermal 

entanglement of a two-level atom and bimodal 

photons in a Kerr nonlinear coupler,” Phys. A, 

Vol. 392, pp. 6161-6167, 2013. 

[26] G. Vidal and R.F. Werner, “Computable 

measure of entanglement,” Phys. Rev. A, Vol. 

65, pp.032314 (1-12), 2002. 

[27] F. Amiri and M.M. Golshan, “Effect of 

external magnetic field on thermal 

entanglement of spin-subband states in a 

Rashba nanowire,” J. Nanopart Res, Vol. 13, 

pp. 6069-6073, 2011. 

[28] V. Ceban and M.A. Macovei, “Cavity quantum 

interferences with three-level atoms,” J. Opt. 

Soc. Am. B, Vol. 33, pp. 942-946, 2016.  

[29] R. Lo Franco, G. Compagno, A. Messina, and 

A. Napoli “Generation and revealing a 

quantum superposition of electromagnetic 

field binomial states in a cavity,” Phys. Rev. A, 

Vol. 76, pp. 011804 (1-4), 2007. 

[30] F. Yadollahi, R. Safaiee, and M.M. Golshan, 

“Entanglement between atomic thermal states 

and coherent or squeezed photons in a damping 

cavity,” Physica A, Vol. 492, pp. 472-484, 

2018. 

[31] H.-P. Breuer and F. Petruccinne, Irreversible 

Quantum Dynamics, Springer-Verlag Berlin 

Heidel berg, 2003. 

[32] R. Safaiee, F. Aghel, and M.M. Golshan, 

“Thermal free entanglement of π-electronic 

spin and Landau-sublattice states in Rashba 

monolayer graphene,” J. Stat. Mech. Vol. 

2016, pp. 023101 (1-16), 2016. 

[33] F. Yadollahi and M.K. Tavassoly, “A 

theoretical scheme for generation of Gazeau-

Klauder coherent states via intensity-

dependent degenerate Raman interaction,” 

Opt. Commun. Vol. 284, pp. 608-612, 2011. 

 

 

Fatemeh Yadollahi received her M.Sc. in 

Physics, from Yazd University, Yazd, Iran, in 

2010. She is currently a Ph.D. student at Shiraz 

University working on atom-photon 

entanglement in lossy cavities. 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

25
-0

6-
10

 ]
 

                             9 / 10

https://mail.ijop.ir/article-1-322-fa.html


F. Yadollahi et al. Characteristics of the Temporal Behavior of Entanglement between … 

52 

 

Rosa Safaiee received her B.Sc., M.Sc. and 

Ph.D. in Physics, from Shiraz University, 

Shiraz, Iran, in 2005, 2008 and 2013, 

respectively. Presently, she holds a position at 

the Faculty of Advanced Technologies, Shiraz 

University, as an assistant professor. Dr. 

Safaiee's main research interest is quantum 

entanglement in nanostructures. 

  

Mohammad Mehdi Golshan received his 

Ph.D. in Physics from the University of North 

Texas, Denton, Texas, U.S.A., in 1987. Dr. 

Golshan has been a tenured member of Physics 

Department, Shiraz University, Shiraz, Iran, 

ever since. His main interests include Quantum 

entanglement schemes, particularly in atom-

fields, spin-spin, spin-subbands in 

nanostructures.

 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

ai
l.i

jo
p.

ir
 o

n 
20

25
-0

6-
10

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

https://mail.ijop.ir/article-1-322-fa.html
http://www.tcpdf.org

